分析 (1)证明EF∥平面ABC得出平面BEF⊥平面ABC;
(2)根据面面垂直的性质得出AC⊥平面BEF,故而BE⊥AC.
解答 证明:(1)∵$\frac{AE}{AC}=\frac{AF}{AD}$,∴EF∥CD,
∵AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD,
∴EF⊥AB,
又CD⊥BC,EF∥CD,
∴EF⊥BC,
∵AB∩BC=B,AB、BC?平面ABC,
∴EF⊥平面ABC,∵EF?平面BEF,
∴平面BEF⊥平面ABC.
(2)由(1)知,EF⊥平面ABC,又AC?平面ABC,
∴AC⊥EF,
又平面BEF⊥平面ACD,平面BEF∩平面ACD=EF,BE?平面BEF,
∴BE⊥平面ACD,AC?平面ACD,
∴BE⊥AC.
点评 本题考查了面面垂直的判定与性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 110 | B. | 90 | C. | 55 | D. | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com