精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=|x-1|-2|x+1|的最大值为k.
(1)求k的值;
(2)若$\frac{1}{m}+\frac{1}{2n}=k({m>0,n>0})$,求证:m+2n≥2.

分析 (1)由已知可得f(x)=$\left\{\begin{array}{l}{-x-3,x≥1}\\{-3x-1,-1<x<1}\\{x+3,x≤-1}\end{array}\right.$,利用一次函数的单调性即可得出.
(2)由(1)可得:$\frac{1}{m}$+$\frac{1}{2n}$=2,(m,n>0).可得m+2n=$\frac{1}{2}$(m+2n)$(\frac{1}{m}+\frac{1}{2n})$=$\frac{1}{2}$(2+$\frac{2n}{m}$+$\frac{m}{2n}$),再利用基本不等式的性质即可得出.

解答 (1)解:∵f(x)=$\left\{\begin{array}{l}{-x-3,x≥1}\\{-3x-1,-1<x<1}\\{x+3,x≤-1}\end{array}\right.$,
∴f(x)的最大值为f(-1)=2,因此k=2.
(2)证明:由(1)可得:$\frac{1}{m}$+$\frac{1}{2n}$=2,(m,n>0).
∴m+2n=$\frac{1}{2}$(m+2n)$(\frac{1}{m}+\frac{1}{2n})$=$\frac{1}{2}$(2+$\frac{2n}{m}$+$\frac{m}{2n}$)≥1+$\frac{1}{2}×$2$\sqrt{\frac{2n}{m}•\frac{m}{2n}}$=2,当且仅当m=2n=1时取等号.
∴m+2n≥2.

点评 本题考查了绝对值不等式的性质、基本不等式的性质、一次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,在四边形ABOC中,AO=BO=CO,AB=2,AC=1,∠BAC=120°,若$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ的值为(  )
A.$\frac{13}{6}$B.$\frac{8}{3}$C.$\frac{17}{6}$D.$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列说法错误的是:(1)、(2)、(3).
(1)已知函数y=sinωx的最小正周期为2π,则ω=1;
(2)在平面直角坐标系xOy中,O(0,0),B(1,0),C(0,2$\sqrt{2}$),用斜二测画法把△OBC画在对应的x′O′y′中时,B′C′的长是1;
(3)已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=13,|b-5a|≤12,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影的取值范围是[$\frac{5}{13}$,+∞);
(4)f(x)=ex•sinx(-$\frac{π}{4}$≤x≤$\frac{11π}{4}$)的极大值点为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则复数$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在各项均为正数的等比数列{an}中,若anan+1=22n+1,则a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中的真命题为(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$
B.已知随机变量ξ服从正态分布N(1,σ2),若P(ξ≤4)=0.79,则P(ξ≤-2)=0.21
C.“φ=$\frac{3π}{2}$”是“y=sin(2x+φ)为偶函数”的充要条件
D.函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为弘扬中国传统文化,2017年中央电视台著名主持人董卿主持了一档节目《中国诗词大会》参赛的100名选手年龄分布情况如下:

(Ⅰ)根据频率分布直方图,估计这组数据的中位数和平均值$\overline{x}$(保留1位小数)
(Ⅱ)节目最后由高中生武亦姝和编辑彭敏争夺冠军,比赛规定:主持人每出一题,两位选手必有一人得1分,另一人不得分,先得5分者将成为第二季的总冠军,现比赛进行到武亦姝和彭敏的得分比为3:2,接下来假设主持人每出一道题,彭敏得分的概率为$\frac{3}{5}$,武亦姝得分的概率为$\frac{2}{5}$,请问最终武亦姝获得冠军的概率是多少?
(Ⅲ)现从年龄在[10,20)、[50,60),[60,70]内的三组选手中任意抽取2人,求抽出选手中年龄大于50岁的人数ξ的概率分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在数列{an}中,a1=4,an>0,前n项和为Sn,若${a_n}=\sqrt{S_n}+\sqrt{{S_{n-1}}}(n≥2)$.
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义:函数f(x)在闭区间[a,b]上的最大值与最小值之差为函数f(x)的极差,若定义在区间[-2b,3b-1]上的函数f(x)=x3-ax2-(b+2)x是奇函数,则a+b=1,函数f(x)的极差为4.

查看答案和解析>>

同步练习册答案