精英家教网 > 高中数学 > 题目详情
1.已知在数列{an}中,a1=4,an>0,前n项和为Sn,若${a_n}=\sqrt{S_n}+\sqrt{{S_{n-1}}}(n≥2)$.
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和为Tn,求Tn

分析 (1)利用an=Sn-Sn-1(n≥2)化简可知数列$\left\{{\sqrt{S_n}}\right\}$是一个首项为$\sqrt{S_1}=\sqrt{a_1}=2$、公差为1的等差数列,再次利用an=Sn-Sn-1(n≥2)可得当n≥2时的通项公式,进而验证当n=1时是否成立即可;
(2)通过(1)利用裂项相消法计算即得结论.

解答 解:(1)因为an=Sn-Sn-1(n≥2),
所以${a_n}={S_n}-{S_{n-1}}=\sqrt{S_n}+\sqrt{{S_{n-1}}}$,
从而($\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$)($\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$)=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2),
因为an>0,所以$\sqrt{S_n}>0$,从而$\sqrt{S_n}-\sqrt{{S_{n-1}}}=1(n≥2)$,
所以数列$\left\{{\sqrt{S_n}}\right\}$是一个首项为$\sqrt{S_1}=\sqrt{a_1}=2$、公差为1的等差数列,
则$\sqrt{{S}_{n}}$=2+n-1=n+1,即Sn=(n+1)2
当n≥2时,${a_n}={S_n}-{S_{n-1}}={(n+1)^2}-{n^2}=2n+1$,
当n=1时,a1=4,所以${a_n}=\left\{\begin{array}{l}4,n=1\\ 2n+1,n≥2\end{array}\right.$.
(2)由(1)可知当n≥2时,
${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{4×5}+\frac{1}{5×7}+…+\frac{1}{(2n+1)×(2n+3)}$
=$\frac{1}{4×5}+\frac{1}{2}[(\frac{1}{5}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{9})+…+(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{20}+\frac{1}{2}(\frac{1}{5}-\frac{1}{2n+3})=\frac{3}{20}-\frac{1}{4n+6}$,
又因为当n=1时T1=$\frac{1}{20}$满足上式,
所以Tn=$\frac{3}{20}$-$\frac{1}{4n+6}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{2x-3}$+$\frac{1}{x-3}$的定义域为(  )
A.[$\frac{3}{2}$,+∞)B.(-∞,3)∪(3,+∞)C.[$\frac{3}{2}$,3)∪(3,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|-2|x+1|的最大值为k.
(1)求k的值;
(2)若$\frac{1}{m}+\frac{1}{2n}=k({m>0,n>0})$,求证:m+2n≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,0)顶点B在椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1上,则$\frac{sinA+sinC}{sin(A+C)}$=(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点,F(c,0)是右焦点,若抛物线${y^2}=-\frac{{4{a^2}}}{c}x$的准线l上存在一点P,使∠APF=30°,则双曲线的离心率的范围是(  )
A.[2,+∞)B.(1,2]C.(1,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω=$\frac{2}{3}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的前n项和Sn=2n-a,则数列{log2an}的前10项和等于(  )
A.1023B.55C.45D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a$与$\overrightarrow b$夹角为135°,则$\overrightarrow a•(\overrightarrow a+\vec b)$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-a-lnx.
(Ⅰ)试讨论f(x)的单调性;
(Ⅱ)若f(x)+$\frac{e}{{e}^{x}}$-$\frac{1}{x}$>0在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案