精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,0)顶点B在椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1上,则$\frac{sinA+sinC}{sin(A+C)}$=(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

分析 由题意画出图形,求出椭圆的长轴及焦距长,再由正弦定理把$\frac{sinA+sinC}{sin(A+C)}$转化为三角形边的关系得答案.

解答 解:由椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1,得c=4,
则A(-4,0)和C(4,0)为椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的两个焦点.
∵B在椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1上,
∴a+c=10,b=8.
$\frac{sinA+sinC}{sin(A+C)}$=$\frac{sinA+sinC}{sinB}=\frac{a+c}{b}$=$\frac{10}{8}=\frac{5}{4}$.
故选:D.

点评 本题考查椭圆的简单性质,考查了正弦定理及椭圆定义的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=$\frac{2π}{3}$,AC∩BD=O,且PO⊥平面ABCD,PO=$\sqrt{3}$,点F,G分别是线段PB,PD上的中点,E在PA上,且PA=3PE.
(Ⅰ)求证:BD∥平面EFG;
(Ⅱ)求直线AB与平面EFG的成角的正弦值;
(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则复数$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中的真命题为(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$
B.已知随机变量ξ服从正态分布N(1,σ2),若P(ξ≤4)=0.79,则P(ξ≤-2)=0.21
C.“φ=$\frac{3π}{2}$”是“y=sin(2x+φ)为偶函数”的充要条件
D.函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为弘扬中国传统文化,2017年中央电视台著名主持人董卿主持了一档节目《中国诗词大会》参赛的100名选手年龄分布情况如下:

(Ⅰ)根据频率分布直方图,估计这组数据的中位数和平均值$\overline{x}$(保留1位小数)
(Ⅱ)节目最后由高中生武亦姝和编辑彭敏争夺冠军,比赛规定:主持人每出一题,两位选手必有一人得1分,另一人不得分,先得5分者将成为第二季的总冠军,现比赛进行到武亦姝和彭敏的得分比为3:2,接下来假设主持人每出一道题,彭敏得分的概率为$\frac{3}{5}$,武亦姝得分的概率为$\frac{2}{5}$,请问最终武亦姝获得冠军的概率是多少?
(Ⅲ)现从年龄在[10,20)、[50,60),[60,70]内的三组选手中任意抽取2人,求抽出选手中年龄大于50岁的人数ξ的概率分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}满足a1=1,a2+a3=3,则a1+a2+a3+a4+a5+a6+a7=(  )
A.7B.14C.21D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在数列{an}中,a1=4,an>0,前n项和为Sn,若${a_n}=\sqrt{S_n}+\sqrt{{S_{n-1}}}(n≥2)$.
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条平行直线之间,则这两条平行直线间的距离的最小值是(  )
A.$\frac{{3\sqrt{5}}}{5}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知p:a>|b|,q:a2>b2,则下列结论正确的是(  )
A.p是q的充分不必要条件B.p是q的必要不充分条件
C.p是q的既不充分也不必要条件D.p是q的充要条件

查看答案和解析>>

同步练习册答案