精英家教网 > 高中数学 > 题目详情
18.若平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条平行直线之间,则这两条平行直线间的距离的最小值是(  )
A.$\frac{{3\sqrt{5}}}{5}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{5}$

分析 作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离.

解答 解:作出平面区域如图所示:

可行域是等腰三角形,平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条平行直线之间,则这两条平行直线间的距离的最小值是B到AC的距离,
联立方程组$\left\{\begin{array}{l}{x+y-3=0}\\{x-2y+3=0}\end{array}\right.$,解得B(1,2).
∴平行线间的距离的最小值为d=$\frac{|2×1-2-3|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\frac{3\sqrt{5}}{5}$,
故选:A.

点评 本题考查了平面区域的作法,距离公式的应用,考查转化思想以及计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在复平面内复数z=$\frac{3+4i}{1-i}$(i为虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,0)顶点B在椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1上,则$\frac{sinA+sinC}{sin(A+C)}$=(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω=$\frac{2}{3}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的前n项和Sn=2n-a,则数列{log2an}的前10项和等于(  )
A.1023B.55C.45D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${({{x^2}-\frac{1}{x}+3})^4}$的展开式中常数项是117.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a$与$\overrightarrow b$夹角为135°,则$\overrightarrow a•(\overrightarrow a+\vec b)$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{2-i}{2+i}$-$\frac{2+i}{2-i}$,则z=(  )
A.$\frac{6}{5}$iB.$\frac{8i}{5}$C.-$\frac{8i}{5}$D.-$\frac{6}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若样本平均数为$\overline{x}$,总体平均数为μ,则(  )
A.$\overline{x}$=μB.$\overline{x}$≈μC.μ是$\overline{x}$的估计值D.$\overline{x}$是μ的估计值

查看答案和解析>>

同步练习册答案