精英家教网 > 高中数学 > 题目详情
11.函数y=$\sqrt{2x-3}$+$\frac{1}{x-3}$的定义域为(  )
A.[$\frac{3}{2}$,+∞)B.(-∞,3)∪(3,+∞)C.[$\frac{3}{2}$,3)∪(3,+∞)D.(3,+∞)

分析 根据函数y的解析式,列出使解析式有意义的不等式组,求出解集即可.

解答 解:函数y=$\sqrt{2x-3}$+$\frac{1}{x-3}$,
∴$\left\{\begin{array}{l}{2x-3≥0}\\{x-3≠0}\end{array}\right.$,
解得x≥$\frac{3}{2}$且x≠3;
∴函数y的定义域为[$\frac{3}{2}$,3)∪(3,+∞).
故选:C.

点评 本题考查了根据函数解析式求定义域的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-ax2在处的切线与直线x-y+1=0垂直.
(1)求函数y=f(x)+xf'(x)(f'(x)为f(x)的导函数)的单调区间;
(2)记函数$g(x)=f(x)+\frac{3}{2}{x^2}-({1-b})x$,设x1,x2(x1<x2)是函数g(x)的两个极值点,若$b≥\frac{{{e^2}+1}}{e}-1$,证明:x2≥e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在四边形ABOC中,AO=BO=CO,AB=2,AC=1,∠BAC=120°,若$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ的值为(  )
A.$\frac{13}{6}$B.$\frac{8}{3}$C.$\frac{17}{6}$D.$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=$\frac{2π}{3}$,AC∩BD=O,且PO⊥平面ABCD,PO=$\sqrt{3}$,点F,G分别是线段PB,PD上的中点,E在PA上,且PA=3PE.
(Ⅰ)求证:BD∥平面EFG;
(Ⅱ)求直线AB与平面EFG的成角的正弦值;
(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$sin({α+\frac{π}{6}})=\frac{4}{5}$,则$cos({α-\frac{π}{3}})$的值为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|$\frac{x-10}{x-1}$≤0},B={y|y=lgx,x∈A},则A∪B=(  )
A.{1}B.C.[0,10]D.(0,10]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列说法错误的是:(1)、(2)、(3).
(1)已知函数y=sinωx的最小正周期为2π,则ω=1;
(2)在平面直角坐标系xOy中,O(0,0),B(1,0),C(0,2$\sqrt{2}$),用斜二测画法把△OBC画在对应的x′O′y′中时,B′C′的长是1;
(3)已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=13,|b-5a|≤12,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影的取值范围是[$\frac{5}{13}$,+∞);
(4)f(x)=ex•sinx(-$\frac{π}{4}$≤x≤$\frac{11π}{4}$)的极大值点为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则复数$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在数列{an}中,a1=4,an>0,前n项和为Sn,若${a_n}=\sqrt{S_n}+\sqrt{{S_{n-1}}}(n≥2)$.
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案