精英家教网 > 高中数学 > 题目详情
已知函数f(x)=kx,g(x)=
lnx
x

(1)若不等式f(x)=g(x)在区间 (
1
e
,e
)内的解的个数;
(2)求证:
ln2
25
+
ln3
35
+…+
ln n
n5
1
2e
分析:(I)将方程的解的个数问题转化为函数的图象的交点个数问题;通过导数研究函数的单调性及极值;通过对k与函数h(x)的极值的大小关系的讨论得到方程解的情况.
(II)通过(I)得到的函数的单调性,通过对不等式放缩,利用数列的裂项求和的方法证出不等式.
解答:解:(Ⅰ)由f(x)=g(x),得k=
lnx
x2

h(x)=
lnx
x2
所以,方程f(x)=g(x),在区间[
1
e
,e]
内解的个数即为函数h(x)=
lnx
x2
,x∈[
1
e
,e]
的图象与直线y=k交点的个数.
h′(x)=
1-2lnx
x3
当h′(x)=0时,x=
e

当x在区间[
1
e
,e]
内变化时,h′(x),h(x)变化如下:

x∈[
1
e
e
),h′(x)>0
x∈(
e
,e)时,h′(x)<0

x=
1
e
时,y=-e2;当x=
e
时,y=
1
2e
;当x=e时,y=
1
e2

所以,(1)当k>
1
2e
或k<-e2时,该方程无解
(2)当k=
1
2e
-e2≤k<
1
e2
时,该方程有一个解;
(3)当
1
e2
≤k<
1
2e
时,该方程有两个解.
(Ⅱ)由(Ⅰ)知
lnx
x2
1
2e

lnx
x4
1
2e
1
x2

ln2
24
+
ln3
34
+…+
lnn
n4
1
2e
(
1
22
+
1
32
+…+ 
1
n2
 )


∴∴(
1
22
+
1
32
+…+
1
n2
)<
1
1•2
+
1
2•3
+…+
1
(n-1)n


=1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
<1-
1
n
<1
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e

ln2
25
+
ln3
35
+…+
lnn
n5
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e

ln2
25
+
ln3
35
+…+
lnn
n5
1
2e
点评:本题考查通过导函数研究函数的单调性、求函数的极值、求函数交点的个数,以及通过放缩的方法证明不等式、考查利用裂项法求数列的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数g(x)=
f(x)-1f(x)+1
,试判断函数g(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(
π
3
,1),则函数图象上过点P的切线斜率等于-
3

③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数f(x)=(
1
2
)x-x
1
3
在区间(0,1)上存在零点.
⑤已知向量
a
=(1,-2)
与向量
b
=(1,m)
的夹角为锐角,那么实数m的取值范围是(-∞,
1
2

其中正确命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

同步练习册答案