精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2-x,求f(x)的解析式.

分析 根据函数的奇偶性,设x<0时,则-x>0,得到f(-x)=x2+x,求出函数的解析式即可.

解答 解:由已知得f(0)=0,当x<0时,
则-x>0,而x>0时,
f(x)=x2-x,所以f(-x)=x2+x,
又f(x)为奇函数,所以f(x)=-f(-x),
所以得f(x)=-x2-x,
综上可知f(x)=$\left\{\begin{array}{l}{{-x}^{2}-x,x<0}\\{0,x=0}\\{{x}^{2}-x,x>0}\end{array}\right.$.

点评 本题考查了求函数的解析式问题,考查函数的奇偶性,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C的对边分别为a,b,c,且满足a2-b2-c2+$\sqrt{3}$bc=0,2bsinA=a,BC边上中线AM的长为$\sqrt{14}$
( I)求角A和角B的大小;
( II)求△ABC的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$α∈(\frac{π}{2},π)$,则$\frac{3}{2}cos2α=sin(\frac{π}{4}-α)$,则sin2α的值为(  )
A.$\frac{2}{9}$B.$-\frac{2}{9}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有6人.
(1)求x;
(2)求抽取的x人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛代表相应的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(I)分别求5个年龄组和5个职业组成绩的平均数和方差;
(II)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知公比小于1的等比数列{an}的前n项和为Sn,a1=$\frac{1}{2},7{a_2}=2{S_3}$.
(1)求数列{an}的通项公式;
(2)设bn=log2(1-Sn+1),若$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+…+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{5}{21}$,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥AD,PA⊥AB,AB=AD,AC与BD交于点O.
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)直线PD与过直线AC的平面α平行,平面α与棱PB交于点M,指明点M的位置,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.sin(π-α)=$\frac{1}{7}$,α是第二象限角,则tanα=$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知Rt△ABC中,∠C=90°.AC=3,BC=4,P为线段AB上的点,且$\overrightarrow{CP}$=$\frac{x}{|\overrightarrow{CA}|}$•$\overrightarrow{CA}$+$\frac{y}{|\overrightarrow{CB}|}$•$\overrightarrow{CB}$,则xy的最大值为(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,S3=3a3,则其公比q的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

同步练习册答案