分析 (I)根据线面垂直的判断定理可得PA⊥底面ABCD,即可得到PA⊥BD,得到BD⊥AC,故BD⊥平面PAC,于是平面PBD⊥平面PAC;
(Ⅱ)点M是棱PB的中点,根据线面平行的性质,即可求出PD∥OM,即可得到M为PB的中点.
解答 证明(Ⅰ):∵PA⊥AB,PA⊥AD,
∴PA⊥面ABCD
∴PA⊥BD
又已知ABCD为平行四边形,且AB=AD,
∴四边形ABCD为菱形,
∴BD⊥AC,
∴BD⊥平面PAC
又BD?平面PBD,∴平面PBD⊥平面PAC;
(Ⅱ)点M是棱PB的中点,
证明:如图,![]()
连接MA,MC,MO,
∵PD∥平面MAC,平面PDB∩平面MAC=OM,PD?平面PDB
∴PD∥OM
又∵点O为BD的中点,
∴点M为PB的中点.
点评 本题考查了面面垂直的判定以及线面平行的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | $(-\frac{1}{2},\frac{1}{2})$ | C. | $(-\sqrt{2},\sqrt{2})$ | D. | $(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的投影为cosθ | B. | $\overrightarrow{{e}_{1}^{2}}$=$\overrightarrow{{e}_{2}^{2}}$ | ||
| C. | ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$) | D. | |$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$|=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $4\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com