精英家教网 > 高中数学 > 题目详情
20.若函数y=sin(2x+φ)(0<φ<π)的图象关于直线x=$\frac{π}{3}$对称,则φ的值为$\frac{5π}{6}$.

分析 根据三角函数的对称性得出2×$\frac{π}{3}$+φ=kπ$+\frac{π}{2}$,k∈z,得出φ=kπ$-\frac{π}{6}$,k∈z,利用(0<φ<π)求解即可.

解答 解:∵函数y=sin(2x+φ)(0<φ<π)的图象关于直线x=$\frac{π}{3}$对称,
∴2×$\frac{π}{3}$+φ=kπ$+\frac{π}{2}$,k∈z,
φ=kπ$-\frac{π}{6}$,k∈z,
∵0<φ<π,
∴k=1时,φ=$\frac{5π}{6}$,
故答案为:$\frac{5π}{6}$.

点评 本题简单的考查了三角函数的对称性,得出方程求解即可,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$$\frac{3π}{2}$$\frac{5π}{2}$$\frac{7π}{2}$$\frac{9π}{2}$
Asin(ωx+φ)0  30-30
(1)请将如表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校高三期中考试后,数学教师对本次全部数学成绩按1:20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如表所示的频率分布表:
分数段[50,70)[70,90)[90,110)[110,130)[130,150]总计
频数cb
频率a
(Ⅰ)求表中a,b,c的值,并估计这次考试全校高三数学成绩的及格率(成绩在[90,150]内为及格);
(Ⅱ)设茎叶图中成绩在[100,120)范围内的样本的中位数为m,若从成绩在[100,120)范围内的样品中每次随机抽取1个,每次取出不放回,连续取两次,求取出两个样本中恰好一个是数字m的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;
(3)设$\frac{3}{4}≤a<3$,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有6人.
(1)求x;
(2)求抽取的x人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛代表相应的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(I)分别求5个年龄组和5个职业组成绩的平均数和方差;
(II)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=$\frac{-{2}^{x}+m}{{2}^{x+1}+n}$(m>0,n>0).
(1)当m=n=1时,证明:f(x)不是奇函数;
(2)设f(x)是奇函数,求m与n的值;
(3)在(2)的条件下,求不等式f(f(x))+f($\frac{3}{10}$)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥AD,PA⊥AB,AB=AD,AC与BD交于点O.
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)直线PD与过直线AC的平面α平行,平面α与棱PB交于点M,指明点M的位置,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从甲、乙、丙等5名候选学生中选出2名作为校运动会志愿者,则甲、乙、丙中有2人被选中的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{3}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.球的大圆面积扩大为原大圆面积的4倍,则球的表面积扩大成原球表面积的(  )
A.2倍B.4倍C.8倍D.16倍

查看答案和解析>>

同步练习册答案