精英家教网 > 高中数学 > 题目详情
4.执行如图所示的程序框图,若$a=\frac{9}{4}$,则输出S的值为(  )
A.10B.12C.14D.16

分析 根据已知的框图,模拟程序运行的方法得到结果.

解答 解:由题意,S=0,i=2;S=2,i=3;S=6,i=4;S=12,i=5,结束,
即输出S=12.
故选B.

点评 本题考查的知识点是程序框图,当程序的运行次数不多时,我们多采用模拟程序运行的方法得到程序的运行结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.($\frac{1}{{2\sqrt{x}}}$+x35的展开式中x8的系数是$\frac{5}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有6人.
(1)求x;
(2)求抽取的x人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛代表相应的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(I)分别求5个年龄组和5个职业组成绩的平均数和方差;
(II)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥AD,PA⊥AB,AB=AD,AC与BD交于点O.
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)直线PD与过直线AC的平面α平行,平面α与棱PB交于点M,指明点M的位置,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.sin(π-α)=$\frac{1}{7}$,α是第二象限角,则tanα=$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从甲、乙、丙等5名候选学生中选出2名作为校运动会志愿者,则甲、乙、丙中有2人被选中的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{3}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知Rt△ABC中,∠C=90°.AC=3,BC=4,P为线段AB上的点,且$\overrightarrow{CP}$=$\frac{x}{|\overrightarrow{CA}|}$•$\overrightarrow{CA}$+$\frac{y}{|\overrightarrow{CB}|}$•$\overrightarrow{CB}$,则xy的最大值为(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={θ|cosθ<sinθ,0≤θ<2π},B={θ|tanθ<sinθ},则A∩B={θ|$\frac{π}{2}$<θ<π}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点$A({2,\sqrt{2}})$作圆x2+y2-2x-2=0的切线,则切线方程为x+$\sqrt{2}$y-4=0.(写成一般式)

查看答案和解析>>

同步练习册答案