精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(
π
2
+x)+sin(π+x)
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最小值和最大值;
(3)求f(x)的增区间.
考点:三角函数中的恒等变换应用,复合三角函数的单调性
专题:三角函数的图像与性质
分析:利用诱导公式和两角和差的余弦公式可得f(x)=
2
cos(x+
π
4
)
,再利用三角函数的图象与性质即可得出.
解答: 解:∵f(x)=cosx-sinx=
2
(
2
2
cosx-
2
2
sinx)

=
2
(cos
π
4
cosx-sin
π
4
sinx)=
2
cos(x+
π
4
)

∴(1)f(x)的最小正周期T=
|ω|
=2π

(2)f(x)的最大值为
2
,最小值为-
2

(3)由2kπ-π≤x+
π
4
≤2kπ(k∈Z)
,解得2kπ-
4
≤x≤2kπ-
π
4
(k∈Z).
∴函数f(x)的单调递增区间为[2kπ-
4
,2kπ-
π
4
]
(k∈Z).
点评:本题考查了诱导公式、两角和差的余弦公式、三角函数的图象与性质等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数Z满足 (1+2i)Z=4+3i,求Z及|Z|(i是虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,4),|
b
|=2,
a
b
的夹角是60°.
(1)求
a
b
的值; 
(2)求|
a
-2
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
36
+
y2
16
=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|
PF1
|>|
PF2
|.
(1)求|PF1|的长度;
(2)求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1,点O1为B1D1的中点.
(1)求证:AB1∥面A1O1D;
(2)若AB=
2
3
AA1,试问在线段BB1上是否存在点E使得A1C⊥AE,若存在求出
BE
BB1
,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若csinC-asinA=b(sinB-sinA),c=2.
(Ⅰ)若△ABC的面积为
2
3
3
,求a,b的值;
(Ⅱ)设△ABC的周长为y,试求函数y=f(A)的定义域和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于n∈N*,将n表示为n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,ai为0或1,记I(n)为上述表示中ai为0的个数,例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,Ⅰ(4)=2,则:
(1)Ⅰ(12)=
 
;  
  (2)
63
n=1
I(n)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log5x-
1
x
的零点所在的区间是[a,a+1),a为整数,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的.有如下结论:
①∠DC1D1在图中的度数和它表示的角的真实度数都是45°;
②∠A1C1D=∠A1C1D1+∠D1C1D;
③A1C1与BC1所成的角是30°;
④若BC=m,则用图示中这样一个装置盛水,最多能盛
1
6
m3
的水.
其中正确的结论是
 
(请填上你所有认为正确结论的序号).

查看答案和解析>>

同步练习册答案