精英家教网 > 高中数学 > 题目详情
12.已知三角形ABC内的一点D满足$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,且|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|.平面ABC内的动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值是(  )
A.$\frac{49}{4}$B.$\frac{43}{4}$C.$\frac{{37+6\sqrt{3}}}{4}$D.$\frac{{37+2\sqrt{33}}}{4}$

分析 根据题意可设:D(0,0),A(2,0),B(-1,$\sqrt{3}$),C(-1,-$\sqrt{3}$).根据动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,可设:P(2+cosθ,sinθ),M($\frac{1+cosθ}{2}$,$\frac{sinθ-\sqrt{3}}{2}$),求得$\overrightarrow{BM}$ 得坐标,计算${\overrightarrow{BM}}^{2}$=$\frac{37+12sin(\frac{π}{6}-θ)}{4}$,根据正弦函数的有解性求得它的最大值.

解答 解:∵三角形ABC内的一点D满足:$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,且|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,
∴可设:D(0,0),A(2,0),B(-1,$\sqrt{3}$),C(-1,-$\sqrt{3}$),
∵动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,
可设:P(2+cosθ,sinθ),M($\frac{1+cosθ}{2}$,$\frac{sinθ-\sqrt{3}}{2}$),
∴$\overrightarrow{BM}$=($\frac{3+cosθ}{2}$,$\frac{sinθ-3\sqrt{3}}{2}$),
∴${\overrightarrow{BM}}^{2}$=${(\frac{3+cosθ}{2})}^{2}$+${(\frac{sinθ-3\sqrt{3}}{2})}^{2}$=$\frac{37+12sin(\frac{π}{6}-θ)}{4}$≤$\frac{49}{4}$,
当且仅当sin($\frac{π}{6}$-θ)=1时取等号,
故选:A.

点评 本题考查了向量坐标运算性质、模的计算公式、数量积运算性质、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数y=ax-4+2(a>0,a≠1)的图象过定点P,P为角α终边上一点,则cos2α+sin2α+1=$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四组函数中,表示为同一函数的是(  )
A.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1B.y=x0与g(x)=$\frac{1}{{x}^{0}}$
C.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{x}{x-1}$(x≥3)的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}满足a3•a7=-12,a4+a6=-4,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合P={x|log2x<2},Q={1,2,3},则P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}-lnx,x>0\\{x^2}+1,x<0\end{array}$,则f[f(e)]的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值为(  )
A.3B.4C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知钝角α满足cosα=-$\frac{3}{5}$,则tan(α+$\frac{π}{4}$)的值为$-\frac{1}{7}$.

查看答案和解析>>

同步练习册答案