分析 由已知得a3,a7是一元二次方程x2+4x-12=0的两个根,解方程x2+4x-12=0,得x1=-6,x2=2,从而得到a3=-6,a7=2或a3=2,a7=-6,由此能求出数列{an}的前n项和Sn.
解答 解:∵等差数列{an}满足a3•a7=-12,a4+a6=a3+a7=-4,
∴a3,a7是一元二次方程x2+4x-12=0,
解方程x2+4x-12=0,得x1=-6,x2=2,
当a3=-6,a7=2时,
$\left\{\begin{array}{l}{{a}_{1}+2d=-6}\\{{a}_{1}+6d=2}\end{array}\right.$,
解得a1=-10,d=2,
Sn=-10n+$\frac{n(n-1)×2}{2}$=n2-11n;
当a3=2,a7=-6时,
$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{{a}_{1}+6d=-6}\end{array}\right.$,
,解得a1=6,d=-2,
Sn=6n-$\frac{n(n-1)×2}{2}$=-n2+7n;
综上所述,Sn=n2-11n或Sn=-n2+7n.
点评 本题考查等差数列的通项公式和前n项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{49}{4}$ | B. | $\frac{43}{4}$ | C. | $\frac{{37+6\sqrt{3}}}{4}$ | D. | $\frac{{37+2\sqrt{33}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com