精英家教网 > 高中数学 > 题目详情
10.设i是虚数单位,复数z满足z(1+i)=2i,则复数z的虚部为(  )
A.-iB.iC.1D.-1

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z(1+i)=2i,
∴$z=\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=\frac{2i(1-i)}{2}=1+i$,
∴复数z的虚部为1.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在等比数列{an}中,a5=24,a1a2a3=27,则有(  )
A.a1=$\frac{3}{2}$,q=2B.a1=-$\frac{3}{2}$,q=2C.a1=2,q=-2D.a1=$\frac{3}{2}$,q=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三棱锥P-ABC的四个顶点都在半径为5的球面上,底面ABC所在的小圆面积为9π,则该三棱锥的高的最大值为(  )
A.7B.8C.8.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,若函数f(x)在区间[-2,a]上单调递增,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是(  )
A.$-\frac{4}{3}$B.$-\frac{5}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二项式(x+2$\sqrt{y}$)5=a0x5+a1x4$\sqrt{y}$+…+a5y${\;}^{\frac{5}{2}}$,则a1+a3+a5=122.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$,其长轴的左右两个端点分别为A,B,直线l:y=$\frac{3}{2}$x+m交椭圆于两点C,D.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,它的四个顶点构成的四边形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,过F作两条互相垂直的直线l1,l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于N点.
(1)求证:线段PQ的中点在直线ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在平面四边形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°,则四边形ABCD的面积的最大值是3$\sqrt{3}$.

查看答案和解析>>

同步练习册答案