精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0.则a的取值范围是
 
考点:利用导数研究函数的极值,函数零点的判定定理
专题:导数的综合应用
分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,求出函数的导数,利用导数和极值之间的关系转化为求极小值f(
2
a
)>0,解出即可.
解答: 解:当a=0时,f(x)=-3x2+1=0,解得x=±
3
3
,函数f(x)有两个零点,不符合题意,应舍去;
当a>0时,令f′(x)=3ax2-6x=3ax(x-
2
a
)=0,解得x=0或x=
2
a
>0,列表如下:
 x (-∞,0) 0(0,
2
a
2
a
 (
2
a
,+∞)
 f′(x)+ 0- 0+
 f(x) 单调递增 极大值 单调递减 极小值 单调递增
∵x→-∞,f(x)→-∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.
当a<0时,f′(x)=3ax2-6x=3ax(x-
2
a
)=0,解得x=0或x=
2
a
<0,列表如下:
 x (-∞,
2
a
2
a
2
a
,0)
0(0,+∞)
 f′(x)- 0+ 0-
 f(x) 单调递减 极小值 单调递增 极大值 单调递减
而f(0)=1>0,x→+∞时,f(x)→-∞,∴存在x0>0,使得f(x0)=0,
∵f(x)存在唯一的零点x0,且x0>0,∴极小值f(
2
a
)=a(
2
a
3-3(
2
a
2+1>0,
化为a2>4,
∵a<0,∴a<-2.
综上可知:a的取值范围是(-∞,-2).
故答案为:(-∞,-2).
点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
kx+2,x≤0
1nx,x>0
,若k>0,则方程|f(x)|-1=0的解个数有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=m2(1+i)-(m+i),当实数m分别取何值时,
(1)z是实数?
(2)z对应的点位于复平面的第一象限内?

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=x+k与椭圆
x2
5
+
y2
4
=1相交于不同两点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数F(x)=(x2+
1
x
)2
+(x+
1
x2
)2
在区间(0,
3
2
]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数h(x)=lnx+
1
x

(1)若g(x)=h(x+m),求g(x)的极小值;(提示:(y=ln(x+m)的导数y′=
1
x+m
))
(2)若φ(x)=h(x)-
1
x
+ax2
-2x有两个不同的极值点,其极小值为M,试比较2M与-3的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l与椭圆
y2
a2
+
x2
b2
=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
且椭圆的离心率e=
3
2
,又椭圆经过点(
3
2
,1)
,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-3x+2,求f(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(Ⅰ)求从甲、乙两组各抽取的人数;
(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;
(Ⅲ)求抽取的3名工人中男工人数为1人的概率.

查看答案和解析>>

同步练习册答案