精英家教网 > 高中数学 > 题目详情
已知a+b>0,用分析法证明:
a2+b2
2
2
(a+b).
考点:综合法与分析法(选修)
专题:不等式
分析:本题指定用分析法证明,通过分析得到易证命题,从而证得原命题成立.
解答: 证明:要证:
a2+b2
2
2
(a+b),
只要证:a2+b2
1
2
(a+b)2

只要证:2a2+2b2≥a2+2ab+b2
只要证:a2-2ab+b2≥0,
只要证:(a-b)2≥0.
∵a+b>0,
∴(a-b)2≥0.
∴原命题成立.
点评:本题考查的是用分析法证明不等式,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lg(2sinxcosx),
(1)求它的定义域;
(2)判断该函数是否具有奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=-2时,不等式f(x)>ax-5在(0,2)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))(e为自然对数的底数)处的切线斜率为3.
(1)求实数a、b的值;
(2)若k∈Z,且k<
f(x)
x-1
对任意x>1恒成立,求k的最大值;
(3)当n>m>1(n,m∈Z)时,证明:(mnnm>(nmmn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数),
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)C1与x轴的交点为A,与y轴的交点为B,P为AB中点,求P点的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=
sinx
1+cosx
,x∈(-π,π),求当y′=2时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图; 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”
 非体育迷体育迷合计
   
 1055
合计   
(1)根据已知条件完成下面的2×2列联表,并据此资料你能否在犯错误的概率不超过0.10的前提下认为“体育迷”与性别有关?
(2)求从三个“体育迷”和两个“非体育迷”中任取三个人,其中恰有两个体育迷的概率.
p(K2≥k00.100.050.010
k02.7063.8416.635
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d为样本容量).

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=loga(-x)与y=-ax(a>0,a≠1)在同一坐标系中的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
4-3
2-1

(1)求逆矩阵M-1
(2)求矩阵M的特征值及属于每个特征值的一个特征向量.

查看答案和解析>>

同步练习册答案