精英家教网 > 高中数学 > 题目详情
14.复数z=(a-2)+(a+1)i,a∈R对应的点位于第二象限,则|z|的取值范围是$[\frac{3\sqrt{2}}{2},3)$.

分析 复数z=(a-2)+(a+1)i,a∈R对应的点位于第二象限,可得$\left\{\begin{array}{l}{a-2<0}\\{a+1>0}\end{array}\right.$,解得a范围,|z|=$\sqrt{(a-2)^{2}+(a+1)^{2}}$=$\sqrt{2(a-\frac{1}{2})^{2}+\frac{9}{2}}$,再利用二次函数的单调性即可得出.

解答 解:∵复数z=(a-2)+(a+1)i,a∈R对应的点位于第二象限,
∴$\left\{\begin{array}{l}{a-2<0}\\{a+1>0}\end{array}\right.$,解得-1<a<2,
则|z|=$\sqrt{(a-2)^{2}+(a+1)^{2}}$=$\sqrt{2(a-\frac{1}{2})^{2}+\frac{9}{2}}$∈$[\frac{3\sqrt{2}}{2},3)$,
|z|的取值范围是$[\frac{3\sqrt{2}}{2},3)$,
故答案为:$[\frac{3\sqrt{2}}{2},3)$.

点评 本题考查了复数的几何意义、模的计算公式、不等式的解法、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,△ABC的面积S=2,则A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|ax2+2x-1=0,a∈R}中只有一个元素,则实数a的值为(  )
A.-1B.0C.-1或0D.a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$).
(1)求f(x)单调增区间;
(2)求函数f(x)在[-$\frac{π}{8}$,$\frac{π}{2}$]上的最小值和最大值,并求出取得最值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知2sinα+cosα=0,求2sin2α-3sinαcosα-5cos2α=$-\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C的中心为原点,焦点在x轴上,离心率为$\frac{1}{2}$.两个焦点分别为F1,F2,点P为椭圆C上一点,△F1PF2的周长为12.
(1)求椭圆C的方程;
(2)若|PF1|:|PF2|=11:5,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足(2+i)z=1+2i+3i2+4i3(i为虚数单位),则z的共轭复数是(  )
A.$\frac{6}{5}$+$\frac{2}{5}$iB.$\frac{6}{5}$-$\frac{2}{5}$iC.-$\frac{6}{5}$+$\frac{2}{5}$iD.-$\frac{6}{5}$-$\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简计算下列各式的值
(1)$\frac{{sin(\frac{π}{2}+α)•cos(\frac{π}{2}-α)}}{cos(π+α)}$+$\frac{{sin(π-α)•cos(\frac{π}{2}+α)}}{sin(π+α)}$;
(2)$\frac{{{{(1-{{log}_6}3)}^2}+{{log}_6}2•{{log}_6}18}}{{{{log}_6}4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,求点(2x+3-x2,$\frac{2x-3}{2-x}$)在第四象限的充要条件.

查看答案和解析>>

同步练习册答案