精英家教网 > 高中数学 > 题目详情
9.△ABC的内角A、B、C的对边分别为a、b、c,已知2a=$\sqrt{3}$csinA-acosC.
(1)求C;
(2)若c=$\sqrt{3}$,求△ABC的面积S的最大值.

分析 (1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin(C-$\frac{π}{6}$)=1,结合C的范围,可得C的值.
(2)由余弦定理,基本不等式可求ab≤1,进而利用三角形面积公式可求△ABC面积的最大值.

解答 (本题满分为12分)
解:(1)∵2a=$\sqrt{3}$csinA-acosC,
∴由正弦定理可得:2sinA=$\sqrt{3}$sinCsinA-sinAcosC,…2分
∵sinA≠0,
∴可得:2=$\sqrt{3}$sinC-cosC,解得:sin(C-$\frac{π}{6}$)=1,
∵C∈(0,π),可得:C-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴C-$\frac{π}{6}$=$\frac{π}{2}$,可得:C=$\frac{2π}{3}$.…6分
(2)∵由(1)可得:cosC=-$\frac{1}{2}$,
∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号)…8分
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$,可得△ABC面积的最大值为$\frac{\sqrt{3}}{4}$.…12分

点评 本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届江西南昌市新课标高三一轮复习训练五数学试卷(解析版) 题型:解答题

的三个内角为,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

已知直线的参数方程式是参数).以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为

(1)求直线的普通方程与圆的直角坐标方程;

(2)设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若sinθ+cosθ=$\frac{1}{3}$,则sinθcosθ=$-\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,椭圆C与双曲线${y^2}-\frac{x^2}{2}=1$共焦点,且点P(1,2)在椭圆C上.
(1)求椭圆C的方程;
(2)过定点A(2,0)作一条动直线与椭圆C相交于P,Q.O为坐标原点,求△OPQ面积的最大值及取得最大值时直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将复数、指数函数与三角函数联系起来,将指数函数的定义域扩充为复数,它在复变函数论里占有非常重要的地位,被誉为“数学中的天骄”,根据欧拉公式可知,复数e-2i所对应的点在复平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的内角A、B、C的对边分别为a、b、c,其中c=2b-2acosC.
(1)求A;
(2)当a=2时,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在(4-x-1)(2x-3)5的展开式中,常数项为-27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某商场对一个月内每天的顾客人数进行统计,得到如图所示的样本茎叶图,则该样本的中位数和众数分别是(  )
A.46,45B.45,46C.45,45D.47,45

查看答案和解析>>

同步练习册答案