精英家教网 > 高中数学 > 题目详情
已知集合A={1,2},B={2,4},则A∪B=
 
考点:并集及其运算
专题:集合
分析:利用并集的定义求解.
解答: 解:∵集合A={1,2},B={2,4},
∴A∪B={1,2,4}.
故答案为:{1,2,4}
点评:本题考查并集的求法,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一束光线l自A(-3,3)发出,射到x轴上,被x轴反射到⊙C:x2+y2-4x-4y+7=0上,当反射线通过圆心C时,光线l的方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
3-x,x≤1
log81x,x>1
,则f(f(-4))=(  )
A、1B、-2C、-1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=4x的焦点为F,过F点作直线交抛物线C于A,B两点,则△AOB的最小面积是(  )
A、
2
B、2
C、4
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数a=3+2i,b=4+mi,要使复数
a
b
为纯虚数,则实数m的值为(  )
A、-6
B、6
C、
8
3
D、-
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|y=lg(2x-x2),x∈R},N={x|x<a},若M⊆N,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1开口向上,g(x)=log 
1
2
f(x).
(1)令b=-3,若g(x)在x∈[1,2]上单凋递减,求a的取值范围;
(2)若f(x+2)为偶函数,定义区间[m,n]的长度为n-m,问是否存在常数a,使得函数y=f(x)在区间[a,3]且a≥1的值域为D,且D的长度为10-a2?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合p={x|2x2-5x-12≤0},Q={x|(x-2a)(a-x)>0},若P∩Q=∅,则实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥V-ABCD可绕着AB任意旋转,CD∥平面α.若AB=2,VA=
5
,则正四棱锥V-ABCD在面α内的投影面积的取值范围是
 

查看答案和解析>>

同步练习册答案