精英家教网 > 高中数学 > 题目详情
13.在锐角△ABC中,已知|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=1,S△ABC=$\sqrt{3}$,则$|{\overrightarrow{BC}}|$等于(  )
A.$\sqrt{13}$B.13C.$\sqrt{17}$D.17

分析 由已知利用三角形面积公式可求sinA,结合A为锐角,利用同角三角函数基本关系式可求cosA的值,进而利用余弦定理即可得解.

解答 解:∵|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=1,S△ABC=$\sqrt{3}$=$\frac{1}{2}$×|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|×sinA=$\frac{1}{2}×4×1×$sinA,
∴sinA=$\frac{\sqrt{3}}{2}$,
∵A为锐角,
∴A=$\frac{π}{3}$,cosA=$\frac{1}{2}$,
∴由余弦定理可得:$|{\overrightarrow{BC}}|$=$\sqrt{{4}^{2}+{1}^{2}-2×4×1×\frac{1}{2}}$=$\sqrt{13}$.
故选:A.

点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.原命题“若z1与z2互为共轭复数,则z1z2=|z1|2”,则其逆命题,否命题,逆否命题中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数a,b满足$\frac{9}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=1,则a2+b2的最小值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在R上的偶函数f(x),在[0,+∞)是增函数,若f(k)>f(2),则k的取值范围是{k|k>2或k<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列说法中错误的是①③④(填序号)
①命题“?x1,x2∈M,x1≠x2,有[f(x1)-f(x2)](x2-x1)>0”的否定是“?x1,x2∉M,x1≠x2,有[f(x1)-f(x2)](x2-x1)≤0”;
②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;
③已知p:x2+2x-3>0,$q:\frac{1}{3-x}>1$,若命题(?q)∧p为真命题,则x的取值范围是(-∞,-3)∪(1,2)∪[3,+∞);
④“x≠3”是“|x|≠3”成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=logmx(m为常数,m>0且m≠1),设f(a1),f(a2),…,f(an)(n∈N+)是首项为4,公差为2的等差数列.
(Ⅰ)求证:数列logman=2n+2,{an}是等比数列;
(Ⅱ)若bn=anf(an),记数列{bn}的前n项和为Sn,当m=$\sqrt{2}$时,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1+2a2+3a3+…+nan=n+1(n∈N*),则数列{an}的通项公式${a_n}=\left\{{\begin{array}{l}{2(n=1)}\\{\frac{1}{n}(n≥2)}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)是定义在(-1,+∞)内的增函数,且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a-1)+2
求:
(1)f(9)的值,
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[200,480]的人数为(  )
A.7B.9C.10D.12

查看答案和解析>>

同步练习册答案