精英家教网 > 高中数学 > 题目详情
17.如图,一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是2m和αm(0<α<10),不考虑树的粗细,现用12m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是(  )
A.B.
C.D.

分析 设CD=x,得出矩形面积关于x的函数,讨论对称轴与x的范围的关系得出f(a)的解析式,即可得出答案.

解答 解:设CD=x,则AD=12-x,设矩形ABCD的面积为y,
∴y=x(12-x)=-x2+12x,
∵P在矩形ABCD内部,∴$\left\{\begin{array}{l}{x>2}\\{12-x>a}\end{array}\right.$,
即2<x<12-a.
若12-a≤6,即6≤a<10时,f(a)=-(12-a)2+12(12-a)=-a2+12a,
若12-a>6,即0<a<6,时,f(a)=-62+12×6=36.
∴f(a)=$\left\{\begin{array}{l}{36,0<a<6}\\{-{a}^{2}+12a,6≤a<10}\end{array}\right.$.
故选B.

点评 本题考查了二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=2,$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{lg|x|}{x}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,一直角墙角的两边足够长,若P处有一棵树(不考虑树的粗细)与两墙的距离分别是2m和αm(0<α≤10),现用12m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内(包括边界),则函数u=f(a)(单位:m2)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-4x≤0,x∈Z},B={y|y=m2,m∈A},则A∩B=(  )
A.{0,1,4}B.{0,1,6}C.{0,2,4}D.{0,4,16}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,边长为2的正三角形ABC所在平面与梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F为棱AE的中点.
(1)求证:直线AB⊥平面CDF;
(2)求三棱锥F-ADC的体积..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|-1<x<3},B={x|x≥1},则A∩B=(  )
A.(-1,1]B.[1,3)C.[-1,3]D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为9x+y-1=0,则曲线y=f(x)在点(1,f(1))处的切线方程为7x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)和抛物线y2=8x有相同的焦点,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案