精英家教网 > 高中数学 > 题目详情
己知数{an}满足a1=1,an+1=an+2n,数列{bn}满足bn+1=bn+
b
2
n
n
b1
=1.
(1)求数列{an}的通项公式;
(2)令cn=
1
an+1bn+nan+1-bn-n
,记Sn=c1+c2+…+cn,求证:
1
2
Sn
<1.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an+1-an=2n,由此利用累加法能求出an=n2+n+1.
(2)由已知得
1
bn+1
=
n
(n+bn)•bn
=
1
bn
-
1
n+bn
,从而
1
n+bn
=
1
bn
-
1
bn+1
,进而cn
1
2
[(
1
n
-
1
n+1
)-(
1
bn
-
1
bn+1
)],由此能证明
1
2
Sn
<1.
解答: (1)解:∵{an}满足a1=1,an+1=an+2n,
∴an+1-an=2n,
∴an=a1+a2-a1+a3-a2+…+an+1-an
=1+2+4+6+…+2n
=1+2×
n(n+1)
2

=n2+n+1.
(2)证明:∵bn+1=bn+
b
2
n
n
b1
=1,
bn+1=
nbn+bn2
n
=
(n+bn)•bn
n

1
bn+1
=
n
(n+bn)•bn
=
1
bn
-
1
n+bn

1
n+bn
=
1
bn
-
1
bn+1

∴cn=
1
an+1bn+nan+1-bn-n

=
1
(an+1-1)(bn+n)

1
2
(
1
an+1-1
+
1
bn+n
)

=
1
2
[
1
n(n+1)
+(
1
bn
-
1
bn+1
)
]
=
1
2
[(
1
n
-
1
n+1
)-(
1
bn
-
1
bn+1
)],
∴Sn=c1+c2+…+cn
1
2
[(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)+(
1
b1
-
1
b2
+
1
b2
-
1
b3
+…+
1
bn
-
1
bn+1
)]
=
1
2
[(1-
1
n+1
)+(
1
b1
-
1
bn+1
)]

=
1
2
(2-
1
n+1
-
1
bn+1
)<1,
又由cn=
1
an+1bn+nan+1-bn-n
=
1
(an+1-1)(bn+n)

得{cn}是增数列,∴Sn=c1+c2+…+cn≥c1=
1
a2b1+a2-b1-1
=
1
2

1
2
Sn
<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

梯形ABCD中,AB∥CD,∠DAB=60°,AB=2,CD=1,P是腰AD所在直线上任意一点,则|3
PC
+2
PD
|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面结论:
①命题p:“?x∈R,x2-3x+2≥0”的否定为?p:“?x∈R,x2-3x+2<0”;
②命题:“?x∈R,使得sinx+cosx=1.5; 
③若?p是q的必要条件,则p是?q的充分条件; 
④“M>N”是“㏒aM>㏒aN”的充分不必要条件.
其中正确结论的个数为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点C,D设直线AB,CD的斜率分别为k1,k2,则
k1
k2
等于(  )
A、
k1
k2
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2,则a2等于(  )
A、1B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,且a1=
1
2
an
an-1
=
n-1
n+1
,则an=
 
,S2010=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M与F(1,0)的距离比它到直线l:x+3=0的距离小2,设M的轨迹为G,正项数列{an}满足a1=2,且(an
2an+1
)在曲线G上,则数列{an}的通项公式为(  )
A、an=2n
B、an=2n-1
C、an=2n+1
D、an=2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若把函数 y=sin(x+
π
3
)的图象向右平移m(m>0)个单位长度后,得到y=sinx的图象,则m的最小值(  )
A、
π
6
B、
6
C、
π
3
D、
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(10x-1)
(1)求f(x)=lg(10x-1)的反函数;
(2)若方程f-1(2x)=λ+f(x)总有实根,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案