精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n2,则a2等于(  )
A、1B、3C、4D、5
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:由于数列{an}的前n项和Sn=n2,n分别取1,2即可得出.
解答: 解:∵数列{an}的前n项和Sn=n2
∴a1=S1=1,a1+a2=S2=22
解得a2=3.
故选:B.
点评:本题考查了数列的递推式、前n项和,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是(  )
A、方程x2+ax+b=0没有实根
B、方程x2+ax+b=0至多有一个实根
C、方程x2+ax+b=0至多有两个实根
D、方程x2+ax+b=0恰好有两个实根

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线m、n、l,三个平面α、β、γ,下列四个命题中,正确的是(  )
A、
α⊥γ
β⊥γ
⇒α∥β
B、
m∥β
l⊥m
⇒l⊥β
C、
m∥γ
n∥γ
⇒m∥n
D、
m⊥γ
n⊥γ
⇒m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-4ax+b(a>0)在区间[0,1]上有最大值1和最小值-2,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)判断函数f(x)在(1,+∞)上的单调性,并证明你的结论;
(Ⅲ)若不等式f(2x)-k•2x≥0在x∈[-2,2]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,an+1=
2an
1+an
(n∈N*)
,且a7=
1
2
,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

己知数{an}满足a1=1,an+1=an+2n,数列{bn}满足bn+1=bn+
b
2
n
n
b1
=1.
(1)求数列{an}的通项公式;
(2)令cn=
1
an+1bn+nan+1-bn-n
,记Sn=c1+c2+…+cn,求证:
1
2
Sn
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,高A1A=3,体积为24,则对角线A1C为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax+2b在区间(0,1)、(1,2)内各有一个零点,则
b-2
a-1
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,问堆料场的长和宽各为多少时,才能使砌墙所用的材料最省?

查看答案和解析>>

同步练习册答案