精英家教网 > 高中数学 > 题目详情
1.在复平面内,复数$\frac{1-i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{1-i}{i}$=$\frac{-i(1-i)}{-i•i}$=-i-1对应的点(-1,-1)位于第三象限,
故选:C.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.画出不等式组$\left\{\begin{array}{l}{x-2y+1≤0}\\{x+y-5≤0}\\{2x-y-1>0}\end{array}\right.$表示的平面区域,并求其面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数x,y满足x2+y2-4y+3=0,则$\frac{y}{x}$的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,$\sqrt{3}$]C.[-$\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{a}$=1,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是60°.
(1)求|$\overrightarrow{b}$|,|$\overrightarrow{a}$+2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥(λ$\overrightarrow{a}$-$\overrightarrow{b}$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知一次函数f(x)=(-k2+3k+4)x+2,则实数k应满足的条件是k≠-1,k≠4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有两个函数$f(x)=asin(kx+\frac{π}{3}),g(x)=btan(kx-\frac{π}{4})(k>0)$,它们的最小正周期之和为3π,且满足$f(2π)=g(\frac{π}{2}),f(\frac{3π}{2})=g(\frac{5π}{12})-2$,求这两个函数的解析式,并求g(x)的对称中心坐标及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在今后的三天中,每一天下雨的概率均为40%现采用随机模拟的方法:先由计算器给出0到9之间取整数值的随机数,指定1、2、3、4表示下雨,5、6、7、8、9、0表示不下雨,以3个随机数为一组,经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
根据以上数据估计三天中至少有两天下雨的概率为(  )
A.0.25B.0.35C.0.6D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=emx+x2-mx(m∈R).
(Ⅰ)当m=1时,求函数f(x)的单调区间;
(Ⅱ)若m<0,且曲线y=f(x)在点(1,f(1))处的切线与直线x+(e+1)y=0垂直.
(i)当x>0时,试比较f(x)与f(-x)的大小;
(ii)若对任意x1,x2(x1≠x2),且f(x1)=f(x2),证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上的小正方形的边长为l,粗线画出的是某几何体的三视图,若该几何体的顶点都在一个球面上,则该球的表面积为(  )
A.12πB.24 πC.36πD.48π

查看答案和解析>>

同步练习册答案