分析 根据题意列出方程组,求出k、a、b的值,写出函数f(x)、g(x)的解析式,再求函数g(x)的对称中心坐标与单调区间.
解答 解:依题意可得:$\left\{\begin{array}{l}\frac{2π}{k}+\frac{π}{k}=3π\\ asin(2kπ+\frac{π}{3})=btan(\frac{kπ}{2}-\frac{π}{4})\\ asin(\frac{3}{2}kπ+\frac{π}{3})=btan(\frac{5kπ}{12}-\frac{π}{4})-2\end{array}\right.$,
解得:$\left\{\begin{array}{l}k=1\\ a=2\\ b=\sqrt{3}.\end{array}\right.$;
故$f(x)=2sin(x+\frac{π}{3}),g(x)=\sqrt{3}tan(x-\frac{π}{4})$;
令$x-\frac{π}{4}=\frac{kπ}{2}$,得$x=\frac{π}{4}+\frac{kπ}{2}$,
故g(x)的对称中心坐标为$(\frac{π}{4}+\frac{kπ}{2},0)(k∈Z)$,
当$-\frac{π}{2}+kπ<x-\frac{π}{4}<\frac{π}{2}+\frac{kπ}{2}(k∈Z)$时,g(x)单调递增,
即当$-\frac{π}{4}+kπ<x<\frac{3π}{4}+\frac{kπ}{2}(k∈Z)$时,g(x)单调递增,无递减区间.
点评 本题考查了三角函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 任意正数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | 48 | C. | 36 | D. | 54 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{n}{2n+1}$ | B. | $\frac{n}{2n+1}$ | C. | -$\frac{2n}{2n+1}$ | D. | $\frac{2n}{2n+1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com