精英家教网 > 高中数学 > 题目详情
5.画出不等式组$\left\{\begin{array}{l}{x-2y+1≤0}\\{x+y-5≤0}\\{2x-y-1>0}\end{array}\right.$表示的平面区域,并求其面积.

分析 由题意作平面区域,从而由直线方程解出三个点的坐标,从而求三角形的面积.

解答 解:由题意作平面区域如下,

由$\left\{\begin{array}{l}{y=2x-1}\\{y=5-x}\end{array}\right.$解得,
B(2,3),
同理可得,C(3,2),D(1,1),
故|BC|=$\sqrt{2}$,
点D到直线BC的距离h=$\frac{3\sqrt{2}}{2}$,
故S=$\frac{1}{2}$×$\sqrt{2}$×$\frac{3\sqrt{2}}{2}$=$\frac{3}{2}$.

点评 本题考查了线性规划的应用及数形结合的思想方法应用,同时考查了点到直线的距离的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知p:x<-3或x>1,q:x>a,若?p是?q的充分不必要条件,则a的取值范围a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设z是虚数,ω=z+$\frac{1}{z}$是实数,且-1<ω<2.
(1)求|z|的值及z的实部的取值范围;
(2)求|z-2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列结论正确的个数是3.
①对于函数f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\\{\;}\end{array}\right.$,任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②函数f(x)=cos2αx-sin2αx的最小正周期为π是“α=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)maz在x∈[1,2]上恒成立;
④?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上是单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x>0,y>0,且2lg(x-2y)=lgx+lgy,则$\frac{x}{y}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={a|x2+2ax+4>0,不等式对x∈R恒成立},B={x|2<($\sqrt{2}$)x+k<4}
(1)若k=1,求A∪B;
(2)若A∩B=∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a3=9,d=7,an≤695,则这个数列至多有(  )
A.98项B.99项C.100项D.101项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知各项均为正的等比数列{an},若a1,$\frac{1}{2}$a3,2a2成等差数列,则$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$等于(  )
A.1-$\sqrt{2}$B.1+$\sqrt{2}$C.3+2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数$\frac{1-i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案