| A. | 1-$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 1 |
分析 设等比数列{an}的公比为q>0,由a1,$\frac{1}{2}$a3,2a2成等差数列,可得$2×\frac{1}{2}{a}_{3}$=a1+2a2,化为q2-2q-1=0,解得q.则$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$=q.
解答 解:设等比数列{an}的公比为q>0,∵a1,$\frac{1}{2}$a3,2a2成等差数列,
∴$2×\frac{1}{2}{a}_{3}$=a1+2a2,
∴${a}_{1}{q}^{2}$=a1(1+2q),
化为q2-2q-1=0,
解得q=1+$\sqrt{2}$.
则$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$=$\frac{{q(a}_{10}+{a}_{15})}{{a}_{10}+{a}_{15}}$=q=1+$\sqrt{2}$.
故选:B.
点评 本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-∞,$\sqrt{3}$] | C. | [-$\sqrt{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com