精英家教网 > 高中数学 > 题目详情
10.已知f(x)=lnx2-lnx,求f(x)在点(1,f(1))处的切线方程.

分析 求得x>0,化简f(x)=lnx,求得导数,求得切线的斜率,由点斜式方程即可得到所求方程.

解答 解:由题意可得x>0,
即有f(x)=2lnx-lnx=lnx,
导数f′(x)=$\frac{1}{x}$,
可得f(x)在点(1,f(1))处的切线斜率为1,
切点为(1,0),
即有f(x)在点(1,f(1))处的切线方程为y-0=x-1,
即为x-y-1=0.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,注意正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在复平面上作出满足下列条件的复数在复平面上对应的点集所表示的图形.
(1)|z|<2;(2)1≤|z|<3;(3)Rez=2;
(4)1<Rez<2且1<lmz<2;(5)|z|>3且lmz<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,点P是平行四边形ABCD所在平面外的一点,点Q是PA的中点,试判断直线PC与平面QBD的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A(3,-1),B($\frac{1}{2}$,$\frac{3}{2}$),C(3,4),试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解方程:
(1)62x+4=33x×2x+8
(2)5x+1=3${\;}^{{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2015年9月3日起,我国在北京举办了包括阅兵式在内的多种话动以纪念抗战胜剩70周年,某五国领导人A,B,C,D,E也应邀参加了观礼活动,活动期间,这五位领导人中,除B与E,D与E不单独会晤外,其他领导人两两之间郡要单独会晤,现安排他们在两天的上午,下午单独会晤(每人每个半天最多只进行一次会晤,每个半天安排两场会晤同时进行),那么安排他们单独会晤的不同方法共有(  )
A.96种B.36种C.24种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=x2定义域为A,值域为{1,4,9}.这样的A有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{x^2}{16}-\frac{y^2}{b^2}=1,(b>0)$实轴的一端点为A,虚轴的一端点为B,且|AB|=5,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{15}=1$B.$\frac{x^2}{16}-\frac{y^2}{12}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解不等式组$\left\{\begin{array}{l}{x^2}-6x+8>0\\ \frac{x+3}{x-1}>2.\end{array}\right.$.

查看答案和解析>>

同步练习册答案