分析 (I)由AP=PB得出PE⊥AB,又DA⊥平面ABP,故DA⊥PE,于是PE⊥平面ABCD,从而有PE⊥DF,在矩形ABCD中,利用勾股定理的逆定理可证DF⊥EF,故而得出DF⊥平面EFP;
(II)在Rt△ABP中求出PE,于是VE-DFP=VP-DEF=$\frac{1}{3}{S}_{△DEF}•PE$.
解答
证明:(Ⅰ)因为AP=BP,E为AB的中点,所以PE⊥AB.
因为DA⊥平面ABP,PE?平面ABP,所以DA⊥PE,
又因为DA∩AB=A,DA?平面ABCD,AB?平面ABCD,
所以PE⊥平面ABCD,又DF?平面ABCD,
所以PE⊥DF.
在Rt△DCF中,$DF=\sqrt{D{C^2}+C{F^2}}=\sqrt{5}$;
在Rt△DAE中,$DE=\sqrt{D{A^2}+A{E^2}}=\sqrt{10}$;
在Rt△BEF中,$EF=\sqrt{B{E^2}+B{F^2}}=\sqrt{5}$.
所以DE2=DF2+EF2,因此DF⊥EF.
又因为PE⊥DF,PE?平面EFP,EF?平面EFP,EF∩PE=E,
所以DF⊥平面EFP.
(Ⅱ)由(Ⅰ)知PE⊥平面ABCD,故PE为三棱锥P-DEF的高,
在△ABP中,$AP=BP=\sqrt{2},AB=2$,所以AB2=AP2+BP2,得AP⊥BP,
又E是AB的中点,所以$PE=\frac{1}{2}AB=1$.
由(Ⅰ)得DF⊥EF,故${S_{△DEF}}=\frac{1}{2}×DF×EF=\frac{5}{2}$,
所以${V_{E-DFP}}={V_{P-DEF}}=\frac{1}{3}×\frac{5}{2}×1=\frac{5}{6}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
| 运动时间 性别 | 运动达人 | 非运动达人 | 合计 |
| 男生 | 36 | ||
| 女生 | 26 | ||
| 合计 | 100 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{27}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{7}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com