| A. | 50万元 | B. | 30万元 | C. | 25万元 | D. | 22万元 |
分析 先设x、y分别为计划生产甲、乙两种混合肥料的车皮数,根据题意列出约束条件,再利用线性规划的方法求解最优解即可.
解答
解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:
$\left\{\begin{array}{l}{4x+y≤10}\\{18x+15y≤66}\\{x≥0,y≥0}\\{x,y∈Z}\end{array}\right.$
再设分别生产甲、乙两种肥料各x、y车皮产生的利润为z=10000x+5000y=5000(2x+y),
由$\left\{\begin{array}{l}{4x+y=10}\\{18x+15y=66}\end{array}\right.$得两直线的交点M(2,2).
令t=2x+y,当直线L:y=-2x+t经过点M(2,2)时,它在y轴上的截距有最大值为6,此时z=30000.
故分别生产甲、乙两种肥料各2车皮时产生的利润最大为30万元.
故选B.
点评 利用线性规划知识解决的应用题.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈z)$ | B. | $[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$ | ||
| C. | $[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$ | D. | $[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈z)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com