精英家教网 > 高中数学 > 题目详情

【题目】在平行四边形ABCD中,E,F分别是CD和BC的中点,若 =x +y (x,y∈R),则2x+y=;若 (λ,μ∈R),则3λ+3μ=

【答案】2;4
【解析】解:如图所示,

= + = +

=x +y (x,y∈R)比较可得:x= ,y=1.

则2x+y=2.②由②可得: = +

同理可得: = +

=λ( + )+μ( + )= +

=

=1, =1.

则3λ+3μ=4.

所以答案是:2,4.

【考点精析】根据题目的已知条件,利用平面向量的基本定理及其意义的相关知识可以得到问题的答案,需要掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC三个顶点坐标为A(0,1),B(0,﹣1),C(﹣2,1).
(I)求AC边中线所在直线方程;
(II)求△ABC的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=mx2+4x+1,且满足f(﹣1)=f(3).
(1)求函数f(x)的解析式;
(2)若函数f(x)的定义域为(﹣2,2),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(﹣1,3). (Ⅰ)若直线l与直线m:3x+y﹣1=0垂直,求直线l的一般式方程;
(Ⅱ)写出(Ⅰ)中直线l的截距式方程,并求直线l与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;
(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,sinθ), =(3,1).
(1)当θ= 时,求向量2 + 的坐标;
(2)若 ,且θ∈(0, ),求sin(2θ+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,cosx=2;命题q:x∈R,x2﹣x+1>0,则下列结论中正确的是(
A.p∨q是假命题
B.p∧q是真命题
C.(¬p)∧(¬q)是真命题
D.(¬p)∨(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则 的最小值为(
A.
B.
C.
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中ω>0. (I)若对任意x∈R都有 ,求ω的最小值;
(II)若函数y=lgf(x)在区间 上单调递增,求ω的取值范围

查看答案和解析>>

同步练习册答案