精英家教网 > 高中数学 > 题目详情
16.从7人中选派5人到10个不同岗位的5个中参加工作,则不同的选派方法有(  )
A.$C_7^5A_{10}^5A_5^5$种B.$A_7^5C_{10}^5A_5^5$种
C.$C_{10}^5C_7^5$种D.$C_7^5A_{10}^5$

分析 依分步计数原理,第一步,选出5人;第二步,选出5个岗位;第三步,将5人分配到5个岗位,分别运用排列组合知识计数,最后将结果相乘即可.

解答 解:第一步,选出5人,共有c75中不同选法
第二步,选出5个岗位,共有c105中不同选法
第三步,将5人分配到5个岗位,共有A55中不同选法
依分步计数原理,知不同的选派方法有C75C105A55=C75A105
故选D

点评 本题考查了计数方法,特别是分步计数原理和排列组合,解题时要合理分步,恰当运用排列和组合,准确计数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知抛物线E:y2=4x的焦点为F,点C(-1,0),过点F的直线l与抛物线E相交于A,B两点,若AB⊥BC,则|AF|-|BF|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数是(  )
A.9B.12C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=$\frac{ln3}{3}$,b=$\frac{ln5}{5}$,c=$\frac{ln6}{6}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间四边形ABCD中,AB=BD=AD=2,BC=1,$CD=\sqrt{3}$,若平面ABD⊥平面BCD,则该几何体的外接球表面积为$\frac{16π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若圆x2+y2-4x=0上恰有四个点到直线2x-y+m=0的距离等于1,则实数m的取值范围是方程是(  )
A.$({-2-\sqrt{5},-2+\sqrt{5}})$B.$({-4-\sqrt{5},-4+\sqrt{5}})$C.$({-4-3\sqrt{5},-4-\sqrt{5}})$D.$({-4+\sqrt{5},-4+3\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列1,3,6,10,x,21,…中的x等于(  )
A.17B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a=(2,5)$,$\overrightarrow b=(x,-2)$,且$\overrightarrow a⊥\overrightarrow b$,则x=5,$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{58}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β
其中正确命题的序号是①③.

查看答案和解析>>

同步练习册答案