精英家教网 > 高中数学 > 题目详情
19.曲线y=1-$\frac{16}{81}$x2与x轴所围图形的面积是3.

分析 先求出曲线与x轴的交点,设围成的平面图形面积为A,利用定积分求出A即可.

解答 解:y=1-$\frac{16}{81}$x2,令y=0得x=±$\frac{9}{4}$
设曲线y=1-$\frac{16}{81}$x2与x轴围成图形的面积为A
则A=${∫}_{-\frac{9}{4}}^{\frac{9}{4}}$(1-$\frac{16}{81}$x2)dx=(x-$\frac{16}{243}$x3)${|}_{-\frac{9}{4}}^{\frac{9}{4}}$=3
故答案为:3.

点评 考查学生利用定积分求平面图形面积的能力,解题的关键是求出积分的上下限,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列函数中,在区间(0,1]上是增函数且最大值为-1的为(  )
A.y=-x2B.$y={(\frac{1}{2})^x}$C.$y=-\frac{1}{x}$D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是函数f(x)=Acos(ωx+φ)的一段图象,则函数f(x)图象上的最高点坐标为(  )
A.($\frac{kπ}{2}$,2),k∈ZB.(kπ,2),k∈ZC.(2kπ-$\frac{π}{6}$,2),k∈ZD.(kπ-$\frac{π}{12}$,2),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(ekx+1)-x(其中e为自然对数的底数)为定义在R上的偶函数,且f(x)=lnu(x).
(1)求实数k的值,并求函数u(x)的表达式;
(2)若函数g(x)=e2x+e-2x-2p•u(x)的最小值为-3,求实数p的值;
(3)设函数h(x)=$\frac{{e}^{2x}+m•{e}^{x}+1}{({e}^{x}+1)^{2}}$,若对任意的x1,x2,x3∈R,都有h(x1)+h(x2)≥h(x3),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是10的样本,若编号为60的产品在样本中,则该样本中产品的最大编号为76.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P为抛物线C:x2=2py(p>0)上任意一点,O为坐标原点,点M(0,m),若|PM|≥|OM|恒成立,则实数m的取值范围为(  )
A.(-∞,$\frac{p}{4}$]B.(-∞,$\frac{p}{2}$]C.(-∞,p]D.(-∞,2p]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用数字0、1、2、3、4可以组成多少个无重复数字的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子不空,则A、B在同一盒中的概率是(  )
A.$\frac{6}{25}$B.$\frac{11}{25}$C.$\frac{4}{15}$D.$\frac{6}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆(x-1)2+(y+1)2=2与圆x2+y2=1的公共弦所在直线方程为2x-2y=1.

查看答案和解析>>

同步练习册答案