精英家教网 > 高中数学 > 题目详情
4.在△ABC中,AB=2,∠A=60°,点D满足$\overrightarrow{CD}$=2$\overrightarrow{DB}$,且AD=$\frac{\sqrt{37}}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

分析 根据向量的加减的几何意义以及,向量的模的计算,设AC=x,构造方程,求出x,再根据向量的数量积公式计算即可.

解答 解:$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,
∵AD=$\frac{\sqrt{37}}{3}$,设AC=x,
∴$\frac{4}{9}$${\overrightarrow{AB}}^{2}$+$\frac{4}{9}$$\overrightarrow{AB}•\overrightarrow{AC}$+$\frac{1}{9}$${\overrightarrow{AC}}^{2}$=$\frac{37}{9}$,
∴$\frac{16}{9}$+$\frac{4}{9}$×2xcos60°+$\frac{{x}^{\;}}{9}$=$\frac{37}{9}$,
∴x2+4x-21=0,
解得x=3,x=-7(舍去),
∴$\overrightarrow{AB}•\overrightarrow{AC}$=2×3×$\frac{1}{2}$=3,
故答案为:3

点评 本题考查了向量的数量积的运算和向量模的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设等差数列{an}的公差d<0,前n项和为Sn,已知3$\sqrt{5}$是-a2与a9的等比中项,S10=20,则d=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设i为虚数单位,则复数$\frac{3-4i}{i}$=-4-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}满足${a_1}=\frac{1}{3}$,对任意n∈N*,${a_{n+1}}={a_n}^2+{a_n}$,则$\sum_{n=1}^{2016}{\frac{1}{{{a_n}+1}}}$的整数部分是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在整数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,2)上存在极小值,若存在,求出所有整数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.8月27日我校组织了高一学生拉练活动,步行路线如图:A→B→C→D→E→F→A(A是学校,BCDF为矩形,AB=BF=2km,BC=4km),步行匀速前进,速度4km/h,拉练过程中在DF的中点E处休息了半小时,从学校A点出发开始计时,经过t小时到达P点,P到A的直线距离为|PA|,设y=|PA|2
(1)写出y关于t的函数的定义域、值域.
(2)写出y关于t的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(-2,m)$,若$\overrightarrow a$与$\overrightarrow a+\overrightarrow b$垂直,则m的值为(  )
A.$-\frac{1}{2}$B.$-\frac{8}{3}$C.$\frac{1}{2}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)的定义域为R,且f(x-1)是奇函数,则下面结论一定成立的是(  )
A.f(x+1)是偶函数B.f(x+1)是非奇非偶函数
C.f(x)=f(x+2)D.f(x+3)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2+ex,则f'(1)=2+e.

查看答案和解析>>

同步练习册答案