精英家教网 > 高中数学 > 题目详情
13.$\frac{2-3i}{3+2i}$等于(  )
A.-$\frac{1}{5}$iB.$\frac{1}{5}$iC.-iD.i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{2-3i}{3+2i}$=$\frac{(2-3i)(3-2i)}{(3+2i)(3-2i)}=\frac{-13i}{13}=-i$,
故选:C.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆M:$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)上一点与椭圆的两个焦点构成的三角形周长为4+2$\sqrt{3}$.
(1)求椭圆M的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设P是一个数集,且至少含有两个数,若对任意a,b∈P,都有a+b,a-b,ab,$\frac{a}{b}$∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域.求证:
(1)数域必含有0与1两个数;
(2)数域必为无限集;
(3)数集A={x|x=a+b•$\sqrt{2}$,a,b∈Q}是数域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x,求f(x)的最小正周期和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(2x+$\frac{π}{6}$)+a+1,且当x$∈[0,\frac{π}{2}]$时,f(x)的最小值为2.
(1)求a的值,并求(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再将所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=-2sinx+$\sqrt{2}cosx$的最小值是(  )
A.-$\sqrt{6}$B.-2C.-$\sqrt{2}$D.-2-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列4,6,9…的通项公式an=4×($\frac{3}{2}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设Sn是等差数列{an}的前n项和,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{4}$,则$\frac{{S}_{6}}{{S}_{12}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图的程序框图,若t输入(a,a+1)中的数值,输出的S是单调增加的,则实数a的取值范围是(  )
A.(-∞,1)B.[1,4]C.(-∞,1]∪(4,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

同步练习册答案