精英家教网 > 高中数学 > 题目详情
3.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集个数为(  )
A.2B.3C.4D.8

分析 根据题意,写出集合P即可.

解答 解:根据题意,
若1∈P,则2×1=2∈M,故不满足题意;
若2∈P,则2×2=4∈M,故不满足题意;
若3∈P,则2×3=6∉M,故满足题意;
若4∈P,则2×4=8∉M,故满足题意;
综上,P={3,4},
所以集合P的子集有:∅,{3},{4},{3,4},
故选:C.

点评 本题考查集合的定义及子集,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图是一个“直角三角形数库”,已知它的每一行从左往右的数均成等差数列,同时从左往右的第三列起,每一列从上往下的数成等比数列,且所有等比数列的公比相等,记数阵第i行第j列的数为aij(i≤j,i,j∈N),则a68=(  )
A.$\frac{1}{12}$B.$\frac{1}{24}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的表面积是(  )
A.12+4$\sqrt{6}$B.17C.12+2$\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从区间(0,2)内随机取两个数x,y,则使$\frac{y}{x}$≥4的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x+3y=2,则3x+27y的最小值为(  )
A.$2\sqrt{2}$B.4C.$3\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}+\frac{1}{{b}_{2}{b}_{3}}+…+\frac{1}{{b}_{9}{b}_{10}}$=(  )
A.$\frac{1}{11}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{2}{2{a}_{n}-1}$,其中n∈N*
(Ⅰ)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(Ⅱ)设cn=$\frac{{4{a_n}}}{n+1}$,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn<$\frac{1}{{{c_m}{c_{m+1}}}}$对于n∈N*恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,作直线AC⊥l,现给出下列四个判断:(1)AC与l相交,(2)AC⊥α,(3)AC⊥β,(4)AC∥β.则可能成立的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知两点A(-2,-1),B(-1,2),若直线l过点P(0,1),且与线段AB有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案