精英家教网 > 高中数学 > 题目详情
若下表中每行、每列的数都成等差数列,则位于表中的第n行第n+1列的数是
 

考点:归纳推理
专题:推理和证明
分析:由表格可以看出第n行第一列的数为n,观察得第n行的公差为n,这样可以写出各行的通项公式,本题要的是第n行第n+1列的数字,写出通项求出即可.
解答: 解:由表格可以看出第n行第一列的数为n,
观察得第n行的公差为n,
∴第n0行的通项公式为an=n0+(n-1)n0
∵为第n+1列,
∴可得答案为n2+n.
故答案为:n2+n
点评:本题主要考查了等差数列的概念和通项公式,以及运用等差关系解决问题的能力,属中档题.这是一个考查学生观察力的问题,主要考查学生的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex(sinx-1)
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)当x∈[-π,π]时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx-
3
cos2x.
(Ⅰ)求f(0)的值及函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(a,0)且与极轴相交成60°角的直线的极坐标方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy内,点P(x,y)在曲线C:
x=1+cosθ
y=sinθ
(θ为参数)上运动.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=0.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α内有n个点,且任意三点都不共线,若“这n个点到平面β的距离均相等”是“α∥β”的充要条件,则n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(2x+1)=x2-4x+2,则f(3-4x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-lne2=x,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①f(x)=x3-3x2是增函数,无极值.
②f(x)=x3-3x2在(-∞,2)上没有最大值
③由曲线y=x,y=x2所围成图形的面积是
1
6
 
④函数f(x)=lnx+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是(-∞,2)
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案