精英家教网 > 高中数学 > 题目详情
对于任意的实数a,b,记max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函数y=f(x)(x∈R)是奇函数,且当x≥0时,f(x)=(x-1)2-2;函数y=g(x)(x∈R)是正比例函数,其图象与x≥0时函数y=f(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是(  )
A.y=F(x)为奇函数
B.y=F(x)在(-3,0)上为增函数
C.y=F(x)的最小值为-2,最大值为2
D.以上说法都不正确


∵f(x)*g(x)=min{f(x),g(x)},
∴f(x)*g(x)=max{f(x),g(x)}的定义域为R,
f(x)*g(x)=min{f(x),g(x)},画出其图象如图中实线部分,
由图象可知:y=F(x)的图象不关于原点对称,不为奇函数;
y=F(x)在(-3,0)上不为增函数;
y=F(x)的没有最小值和最大值为,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

给出命题:若a,b是正常数,且a≠b,x,y∈(0,+∞),则
a2
x
+
b2
y
(a+b)2
x+y
(当且仅当
a
x
=
b
y
时等号成立).根据上面命题,可以得到函数f(x)=
2
x
+
9
1-2x
x∈(0,
1
2
)
)的最小值及取最小值时的x值分别为(  )
A.11+6
2
2
13
B.11+6
2
1
5
C.5,
2
13
D.25,
1
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
log2x,x>0
2x,x≤0
若f(a)=
1
2
,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在[-1,1]上的增函数,且f(x-1)<f(1-3x),则x的取值范围(  )
A.x≤
1
2
B.x<
1
2
C.0≤x<
1
2
D.0<x≤
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-
1
x
x≥1
1
x
-10<x<1.

(I)当0<a<b,且f(a)=f(b)时,求
1
a
+
1
b
的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+2ax+2
(1)当a=-2时,写出函数f(x)的单调区间.
(2)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调增函数.
(3)若x∈[-5,5],求函数f(x)的最小值h(a).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=
(3a-1)x+4a,x<1
-ax(x≥1)
,在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.[
1
8
1
3
B.[0,
1
3
]
C.(0,
1
3
D.(-∞,
1
3
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是奇函数,又在R上是增函数的是(  )
A.y=x
2
3
B.y=-x|x|C.y=2x+2-xD.y=2x-2-x

查看答案和解析>>

同步练习册答案