精英家教网 > 高中数学 > 题目详情
18.如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点M处的切线与圆C2:x2+y2=1相切于点Q.
(Ⅰ)当直线MQ的方程为$x-y-\sqrt{2}=0$时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1,S2分别为△FMQ,△FOQ的面积,求$\frac{S_1}{S_2}$的最小值.

分析 (Ⅰ)求导,根据导数的几何意义,求得$\frac{x_0}{p}=1$且${x_0}-\frac{x_0^2}{2p}-\sqrt{2}=0$,即可求得p的值,求得抛物线的标准方程;
(Ⅱ)求得切线方程,利用点到直线的距离公式可知$x_0^4=4x_0^2+4{p^2}$,将切线方程代入椭圆方程,求得丨PQ丨,分别表示出S1,S2,根据基本不等式的性质,即可求得$\frac{S_1}{S_2}$的最小值.

解答 解:(Ⅰ)设点$M({x_0},\frac{x_0^2}{2p})$,由x2=2py(p>0)得,$y=\frac{x^2}{2p}$,求导$y'=\frac{x}{p}$,
而直线MQ的斜率为1,
∴$\frac{x_0}{p}=1$且${x_0}-\frac{x_0^2}{2p}-\sqrt{2}=0$,
解得:$p=2\sqrt{2}$.
∴抛物线的标准方程:x2=4$\sqrt{2}$y;…(4分)
(Ⅱ)因为点M处的切线方程为:$y-\frac{x_0^2}{2p}=\frac{x_0}{p}(x-{x_0})$,即$2{x_0}x-2py-x_0^2=0$,
根据切线又与圆相切,得d=r,即$\frac{{|{-x_0^2}|}}{{\sqrt{4x_0^2+4{p^2}}}}=1$,化简得$x_0^4=4x_0^2+4{p^2}$,
4p2=x04-4x02>0,解得:丨x0丨>2,
由方程组$\left\{\begin{array}{l}{2{x}_{0}x-2py-{x}_{0}^{2}=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,解得:Q($\frac{2}{{x}_{0}}$,$\frac{4-{x}_{0}^{2}}{2p}$),
由丨PQ丨=$\sqrt{1+{k}^{2}}$丨xP-xQ丨=$\sqrt{1+\frac{{x}_{0}^{2}}{{p}^{2}}}$丨x0-$\frac{2}{{x}_{0}}$丨=$\frac{丨{x}_{0}丨}{2p}$(x02-2),
点F(0,$\frac{p}{2}$)到切线PQ的距离d=$\frac{丨-{p}^{2}-{x}_{0}^{2}丨}{\sqrt{4{x}_{0}^{2}+4{p}^{2}}}$=$\frac{1}{2}$$\sqrt{{x}_{0}^{2}+{p}^{2}}$=$\frac{{x}_{0}^{2}}{4}$,
则S1=$\frac{1}{2}$丨PQ丨•d=$\frac{丨{x}_{0}^{2}丨}{16p}$(x02-2),S1=$\frac{1}{2}$丨OF丨•丨xQ丨=$\frac{p}{2丨{x}_{0}丨}$,
∴$\frac{S_1}{S_2}$=$\frac{{x}_{0}^{4}({x}_{0}^{2}-2)}{8{p}^{2}}$=$\frac{{x}_{0}^{4}({x}_{0}^{2}-2)}{2({x}_{0}^{4}-4{x}_{0}^{2})}$=$\frac{{x}_{0}^{2}({x}_{0}^{2}-2)}{2({x}_{0}^{2}-4)}$=$\frac{{x}_{0}^{2}-4}{2}$+$\frac{4}{{x}_{0}^{2}-4}$+3≥2$\sqrt{2}$+3,
当且仅当$\frac{{x}_{0}^{2}-4}{2}$=$\frac{4}{{x}_{0}^{2}-4}$时,取“=”号,即x02=4+2$\sqrt{2}$,此时p=$\sqrt{2+2\sqrt{2}}$,
所以$\frac{S_1}{S_2}$的最小值为$3+2\sqrt{2}$.…(12分)

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查导数的几何意义,抛物线切线方程的求法,基本不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在直角坐标系 xOy中,圆C1:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程;
(2)若直线$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t参数)与圆C1的交点为M,N,求△C1MN的面积(C1圆心).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知偶函数f(x)满足f(x)=3x-3(x≥0),则不等式xf(x)<0的解集为(0,1)∪(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过抛物线y2=4x焦点F的直线交抛物线于A,B两点,交其准线于点C,且A,C位于x轴同侧,若|AC|=2|AF|,则直线AB的斜率为(  )
A.±1B.$±\sqrt{3}$C.±2D.$±\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设曲线f(x)=Asin(x+θ)(A>0)的一条对称轴为$x=\frac{π}{5}$,则曲线$y=f(\frac{π}{10}-x)$的一个对称点为(  )
A.$(\frac{π}{5},0)$B.$(\frac{2π}{5},0)$C.$(\frac{3π}{5},0)$D.$(\frac{4π}{5},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z满足z(3+i)=10i(i为虚数单位),则z的共轭复数为(  )
A.-1+3iB.1-3iC.1+3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2=4,直线l:y=x,则圆C上任取一点A到直线l的距离小于1的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,∠C=90°,AC=BC=a,点P在边AB上,设$\overrightarrow{AP}$=λ$\overrightarrow{PB}$(λ>0),过点P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE将△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求证:B′C∥平面A′PE;
(2)是否存在正实数λ,使得二面角C-A′B′-P的大小为60°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

同步练习册答案