【题目】数列1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,
,其相邻的两个1被2隔开,第
对1之间有
个2,则数列的前209项的和为( )
A. 279 B. 289 C. 399 D. 409
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
![]()
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2
,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知边长为4的正三角形ABC的边AB、AC上分别有两点D、E,DE//BC且DE=3,现将△ABC沿DE折成直二面角A﹣DE﹣B,在空间中取一点F使得ADBF为平行四边形,连接AC、FC得六面体ABCEDF,G是BC边上动点.
![]()
![]()
(1)若EG//平面ACF,求CG的长;
(2)若G为BC中点,求二面角G﹣AE﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为
的铁球,并注入水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为___________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系,将曲线
上的每一个点的横坐标保持不变,纵坐标缩短为原来的
,得到曲线
,以坐标原点
为极点,
轴的正半轴为极轴,建立极坐标系,
的极坐标方程为
.
(Ⅰ)求曲线
的参数方程;
(Ⅱ)过原点
且关于
轴对称的两条直线
与
分别交曲线
于
、
和
、
,且点
在第一象限,当四边形
的周长最大时,求直线
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在
内,则为合格品,否则为不合格品.图1是甲套设备的样本的频率分布直方图,表1是乙套设备的样本的频数分布表.
图1:甲套设备的样本的频率分布直方图
![]()
表1:乙套设备的样本的频数分布表
质量指标数 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)根据上述所得统计数据,计算产品合格率,并对两套设备的优劣进行比较;
(2)填写下面列联表,并根据列联表判断是否有95%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
甲套设备 | 乙套设备 | 合计 | |
合格 | |||
不合格 | |||
合计 |
附:
|
|
|
|
|
|
|
|
|
|
|
|
其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将
个数
,
,…,
的连乘积
记为
,将
个数
,
,…,
的和
记为
.(
)
(1)若数列
满足
,
,
,设
,
,求
;
(2)用
表示不超过
的最大整数,例如
,
,
.若数列
满足
,
,
,求
的值;
(3)设定义在正整数集
上的函数
满足:当
(
)时,
,问是否存在正整数
,使得
?若存在,求出
的值;若不存在,说明理由(已知
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以
万元的优惠价转让给了尚有
万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支
元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件
元;②该店月销量
(百件)与销售价格
(元)的关系如图所示;③每月需各种开支
元.
![]()
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com