精英家教网 > 高中数学 > 题目详情
已知0<x<2,求f(x)=
3x(8-3x)
的最大值,并求相应的x值.
考点:二次函数在闭区间上的最值,函数的值域
专题:函数的性质及应用
分析:由题设将被开方数看作是二次函数,利用二次函数的性质求出最值即可
解答: 解:f(x)=
3x(8-3x)
=
-9x2+24x?

令t=-9x2+24x,其对称轴是x=-
b
2a
=-
24
-18
=
4
3

又0<x<2,故当x=
4
3
时,t取到最大值16,
此时f(x)=
3x(8-3x)
的最大值为4,
综上,f(x)=
3x(8-3x)
的最大值4,对应的x值为
4
3
点评:本题考查二次函数的性质,利用二次函数的性质求最值,是常规题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在样本数据的回归分析中,相关指数R2的值越大,则残差平方和
n
i=1
(yi-
?
y
i
)
2
(  )
A、越小B、越大
C、可能大也可能小D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

如表给出一个“三角形数阵”:
1
4
   
1
2
1
4
  
3
4
3
8
3
16
 
   
已知每一列的数成等差数列,从第三行起,每一行的数成等比数列,每一行的公比都相等,记第i行第j列的数为aij(i≥j,i,j∈N*),
(1)求a83
(2)试写出aij关于i,j的表达式;
(3)记第n行的和为An,求数列{An}的前m项和Bm的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3

(1)求函数f(x)的对称轴方程与函数的单调减区间;
(2)若x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班的5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班的5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?
(Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(Ⅲ)现从A班的上述5名学生中随机选取3名学生,用X表示其中视力大于4.6的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角A、B、C所对边的长分别为a,b,c,已知a,b,c成等比数列,且sinAsinC=
3
4

(Ⅰ)求角B的大小;
(Ⅱ)设
m
=(cosA,cos2A),
n
=(-2,1),当
m
n
取最小值时,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放量比上一年的排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加大气主要污染物排放量胁(m>0)万吨.
(Ⅰ)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列{an},求相邻两年主要污染物排放总量的关系式;
(Ⅱ)证明:数列{an-10m}是等比数列;
(Ⅲ)若该市始终不需要采取紧急限排措施,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x+
a
x
+b(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为
 

查看答案和解析>>

同步练习册答案