精英家教网 > 高中数学 > 题目详情
9.求函数y=log2(-2x2+5x+3)(-$\frac{1}{2}$<x<3)的单调减区间.

分析 先求出函数的定义域,然后利用复合函数的单调性确定函数f(x)的单调递减区间.

解答 解:∵-$\frac{1}{2}$<x<3,∴-2x2+5x+3>0,
内函数t=-2x2+5x+3在($\frac{5}{4},3$)上为减函数,外函数y=log2t为增函数,
∴函数y=log2(-2x2+5x+3)(-$\frac{1}{2}$<x<3)的单调减区间为($\frac{5}{4},3$).

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若函数f(x)=lg(8+2x-x2)的定义域为M,函数g(x)=$\sqrt{1-\frac{2}{x-1}}$的定义域为N,求集合M,N,M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4的值为(  )
A.0B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x+1)=$\frac{{{x^2}+2x}}{x+1}$(x≠-1).
(Ⅰ)求函数f(x)的解析式,并判断函数f(x)的奇偶性;
(Ⅱ)求证:f($\frac{1}{x}$)=f(-x);
(Ⅲ)求证:f(x)在(0,+∞)为单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,是函数y=Asin(ωx+φ)+k(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一部分,则函数解析式是(  )
A.$y=2sin(2x+\frac{π}{6})+1$B.$y=sin(2x+\frac{π}{3})+1$C.$y=2sin(\frac{1}{2}x+\frac{π}{6})+2$D.$y=sin(2x+\frac{π}{3})+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}和{bn},满足ak+1=ak+bk,k∈N*,若存在正整数n,使得an=a1成立,则称数列{an}为“n阶还原数列”,给出下列条件:
(1)|bk|=1,(2)|bk|=k,(3)|bk|=2k
则可能使数列{an}为“8阶还原数列”的是(  )
A.(1)B.(1)(2)C.(2)(3)D.(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|a-3<x<a+3},B={x|x2-2x-3>0}.
(1)若a=3,求A∩B,A∪B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=?lnx?,关于x的不等式f(x)-f(1)≥c(x-1)的解集为(0,+∞),则实数c的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sinα=$\frac{1}{3}$,求$\frac{si{n}^{2}α}{co{s}^{2}α}$+sinα的值.

查看答案和解析>>

同步练习册答案