精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.
(Ⅰ)当M是线段AE的中点时,AC平面DMF.
证明如下:
连结CE,交DF于N,连结MN,
由于M、N分别是AE、CE的中点,所以MNAC,
由于MN?平面DMF,又AC不包含于平面DMF,
∴AC平面DMF.(4分)
(Ⅱ)方法一:过点D作平面DMF与平面ABCD的交线l,
∵AC平面DMF,∴ACl,
过点M作MG⊥AD于G,
∵平面ABCD⊥平面CDEF,DE⊥CD,
∴DE⊥平面ABCD,∴平面ADE⊥平面ABCD,
∴MG⊥平面ABCD,
过G作GH⊥l于H,连结MH,则直线l⊥平面MGH,∴l⊥MH,
∴∠MHG是平面MDF与平面ABCD所成锐二面角的平面角.(8分)
设AB=2,则DG=1,GH=DGsin∠GDH=DGsin∠DAC=1×
2
5
=
2
5
MG=
1
2
DE=1
,则MH=
(
2
5
)
2
+12
=
3
5
,(11分)
cos∠MHG=
GH
MH
=
2
5
÷
3
5
=
2
3

∴所求二面角的余弦值为
2
3
.(12分)
方法二:∵平面ABCD⊥平面CDEF,DE⊥CD,
∴DE⊥平面ABCD,可知AD,CD,DE两两垂直,
分别以
DA
DC
DE
的方向为x,y,z轴,
建立空间直角坐标系O-xyz.
设AB=2,则M(1,0,1),F(0,4,2),
DM
=(1,0,1)
DF
=(0,4,2)

设平面MDF的法向量n1=(x,y,z),
n1
DM
=0
n1
DF
=0
,∴
x+z=0
4y+2z=0

令y=1,得平面MDF的一个法向量
n
=(2,1,-2),(8分)
取平面ABCD的法向量
m
=(0,0,1),(9分)
由cos<
n
m
>=
-2
4+1+4
×1
=-
2
3
,(11分)
∴平面MDF与平面ABCD所成锐二面角的余弦值为
2
3
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2.
(1)证明:平面BGM⊥平面BFC;
(2)求三棱锥F-BMC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,平面依次是的中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱ABC-A1B1C1的底面为直角三角形,则棱与底面垂直,如图所示,D是棱CC1的中点,且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)证明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-AB-β为120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,则CD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BECF,CE⊥EF,AD=
3
,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

边长为4的正四面体P-ABC中,E为PA的中点,则平面EBC与平面ABC所成锐二面角的余弦值为______.

查看答案和解析>>

同步练习册答案