精英家教网 > 高中数学 > 题目详情
7.假设张刚家庭的每月收入为x(元),x∈[2000,20000],他制订了一个理财计划:当某月家庭收入不超过3000元时,则不进行投资;当某月家庭收入超过3000元但不超过10000元时,则将超过3000元部分中的50%用于投资;当某月家庭收入超过10000元时,则将超过3000元但不超过10000元部分中的50%和超过10000元部分中的60%用于投资.试建立张刚家每月用于投资的资金y(元)与月收入x(元)之间的函数关系式.

分析 根据已知中的理财计划,分别计算出不同收入段上的投资资表达式,最后综合讨论结果,可得答案.

解答 解:由题意得:当x∈[2000,3000],y=0;
当x∈(3000,10000],y=50%(x-3000)=0.5x-1500;
当x∈(10000,20000],y=50%(10000-3000)+60%(x-10000)=0.6x-2500;
综上可述,张刚家每月用于投资的资金y(元)与月收入x(元)之间的函数关系式y=$\left\{\begin{array}{l}0,x∈[2000,3000]\\ 0.5x-1500,x∈(3000,10000]\\ 0.6x-2500,x∈(10000,20000]\end{array}\right.$

点评 本题考查的知识点是函数模型的选择与应用,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.f(x)=lg(sinx-cosx)的定义域是(2kπ+$\frac{π}{4}$,2kπ+$\frac{5π}{4}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在三角形ABC中,A=120°,AB=4,$BC=2\sqrt{19}$,则$\frac{sinB}{sinC}$的值为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{{\sqrt{19}}}{2}$D.$\frac{{2\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,点H,G分别在AB,CD上,AH=DG=10.
(1)证明四边形EFGH为正方形;
(2)求平面EFGH把该长方体分成的两部分体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F(1,0)是抛物线G:y2=2px的焦点.
(Ⅰ)求抛物线及准线方程;
(Ⅱ)求过点P(0,-2)与抛物线G有一个公共点的直线方程;
(Ⅲ)若点P是抛物线上的动点,点P在y轴上的射影是Q,点$M({\frac{3}{2},\frac{{\sqrt{15}}}{2}})$,试判断|PM|+|PQ|是否存在最小值,若存在求出其最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2ax+2,x∈[-5,5]
(1)求实数a的取值范围,使y=f(x)在定义域上是单调递减函数;
(2)用g(a)表示函数y=f(x)的最小值,求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解不等式:|3x+2|+|2x-4|≥10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数g(x)=f(x-1)+x2是定义在R上的奇函数,且f(0)=-2,则f(-2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{3}$),离心率为$\frac{1}{2}$,左右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆C的方程;
(2)设⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,如图,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求实数k的值.

查看答案和解析>>

同步练习册答案