精英家教网 > 高中数学 > 题目详情
6.已知数列 {an} 的前n项和是Sn且2Sn=2-an
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)记bn=n•an,求数列{bn} 的前n项的和Tn

分析 (Ⅰ)利用数列中an与 Sn关系:当n=1时,a1=S1,当n≥2时,an=Sn-Sn-1解决.得出3an=an-1,判定数列{an}是以$\frac{2}{3}$为首项,$\frac{1}{3}$为公比的等比数列.通项公式易求.
(Ⅱ)直接利用上面的结论求出数列{bn}的通项公式,再利用错位相减法即可求出数列{bn}的前n项和Tn

解答 解:(Ⅰ)当n=1时,2S1=2-a1.2a1=2-a1
∴a1=$\frac{2}{3}$.
当n≥2时,2Sn=2-an.2Sn-1=2-an-1.两式相减得2an=an-1-an
∴3an=an-1,∴数列{an}是以$\frac{2}{3}$为首项,$\frac{1}{3}$为公比的等比数列.       
∴an=$\frac{2}{3}$($\frac{1}{3}$)n-1=2($\frac{1}{3}$)n
(Ⅱ)由(Ⅰ)知bn=2n•($\frac{1}{3}$)n
则Tn=2×$\frac{1}{3}$+2×2×($\frac{1}{3}$)2+2×3×($\frac{1}{3}$)3+…+2n•($\frac{1}{3}$)n
$\frac{1}{3}$Tn=2×($\frac{1}{3}$)2+2×2×($\frac{1}{3}$)3+…+2(n-1)•($\frac{1}{3}$)n+2n•($\frac{1}{3}$)n+1
$\frac{2}{3}$Tn=2×$\frac{1}{3}$+2[($\frac{1}{3}$)2+($\frac{1}{3}$)3+…+($\frac{1}{3}$)n]-2n•($\frac{1}{3}$)n+1=2×$\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}$-2n•($\frac{1}{3}$)n+1=1-($\frac{1}{3}$)n-2n•($\frac{1}{3}$).
∴Tn=$\frac{3}{2}$-$\frac{3+2n}{2}$-($\frac{1}{3}$)n

点评 本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为$\frac{2}{7}$.
优秀非优秀总计
甲班10
乙班30
合计
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
P(K2≥x00.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.0763.8415.0246.6357.87910.828
参考公式及数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是定义在[-3,3]上的奇函数,当x∈[0,3]时,f(x)=log2(x+1).设函数g(x)=x2-2x+m,x∈[-3,3].如果对于?x1∈[-3,3],?x2∈[-3,3],使得g(x2)=f(x1),则实数m的取值范围为(  )
A.[-13,-1]B.(-∞,-1]C.[-13,+∞)D.[1,13]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合A={x|log2x≤2},B={x|$\frac{1}{4}$≤2x≤4},则A∩B=(  )
A.{x|-2≤x≤2}B.{x|-2≤x≤4}C.{x|0<x≤2}D.{x|2≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.现对一个生产茶杯的工厂的日产量进行统计,下面是50天的统计结果(单位:个)
日产量222527
频数1035a
(1)根据上表的数据,求一天的产量分别为22个,25个和27个的频率;
(2)假设工厂各天的茶杯产量相互独立,每个茶杯的成本为10元,且每天生产的茶杯均能以每个20元销售完.若以上述频率作为概率,ξ表示该工厂两天生产的茶杯的利润和(单位:元),求ξ的分布列;
(3)若该工厂两天生产的茶杯的利润和的期望值超过480元,则可被评为先进单位.请估计该工厂能否被评为先进单位?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.两等差数列{an}、{bn}的前n项和的比$\frac{S_n}{T_n}$=$\frac{7n+1}{4n+2}$,则$\frac{{{a_{11}}}}{{{b_{11}}}}$的值是(  )
A.$\frac{43}{74}$B.$\frac{74}{43}$C.$\frac{39}{23}$D.$\frac{23}{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆(x-a)2+y2=4截直线y=x-4所得的弦的长度为2$\sqrt{2}$,则a等于(  )
A.2B.6C.2或6D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)在等比数列中,已知a1=2,S3=26,求q与a3
(2)已知双曲线为-9x2+y2=81,求该双曲线的焦点坐标和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*),则f(n+1)=(  )
A.$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n+1}$B.$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n+2}$
C.$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n+1}$D.$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n+2}$

查看答案和解析>>

同步练习册答案