·ÖÎö £¨1£©ÓÉÌâÒâµÃ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖÒòΪµã$R£¨{\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{14}}}{4}}£©$ÔÚÍÖÔ²ÉÏ£¬µÃa£¬b£¬c£¬¼´¿ÉµÃÍÖÔ²CµÄ±ê×¼·½³Ì¿É£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.µÃ£¨1+4{k}^{2}£©{x}^{2}-8{k}^{2}x+4k{\\;}^{2}-4=0$£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÐx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬
AMµÄ·½³Ì¿É±íʾΪ£ºy=$\frac{{y}_{1}}{{x}_{1}-2}£¨x-2£©$£¬Áîx=0£¬µÃ|OP|=|$\frac{2{y}_{1}}{{x}_{1}-2}$|£®Í¬ÀíµÃ£º|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|£®
¹Ê|OP|•|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|•|$\frac{2{y}_{1}}{{x}_{1}-2}$|=|$\frac{4{y}_{1}{y}_{2}}{£¨{x}_{1}-2£©£¨{x}_{2}-2£©}$|¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖÒòΪµã$R£¨{\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{14}}}{4}}£©$ÔÚÍÖÔ²ÉÏ£¬µÃ$\frac{£¨\frac{\sqrt{2}}{2}£©^{2}}{{a}^{2}}+\frac{£¨\frac{\sqrt{14}}{4}£©^{2}}{{b}^{2}}=1$£¬
ÓÖa 2=b2+c 2£¬½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
ÍÖÔ²CµÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.µÃ£¨1+4{k}^{2}£©{x}^{2}-8{k}^{2}x+4k{\\;}^{2}-4=0$£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÐx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬
ÓÖ¡ßµãMÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬¡àM£¨2£¬0£©£¬
AMµÄ·½³Ì¿É±íʾΪ£ºy=$\frac{{y}_{1}}{{x}_{1}-2}£¨x-2£©$£¬Áîx=0£¬µÃ|OP|=|$\frac{2{y}_{1}}{{x}_{1}-2}$|£®
ͬÀíµÃ£º|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|£®
¹Ê|OP|•|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|•|$\frac{2{y}_{1}}{{x}_{1}-2}$|=|$\frac{4{y}_{1}{y}_{2}}{£¨{x}_{1}-2£©£¨{x}_{2}-2£©}$|¼´£®
¶ø£¨x1-2£©£¨x2-2£©=x1x2-2£¨x1+x2£©+4=$\frac{4{k}^{2}}{1+4{k}^{2}}$£®
y1y2=k£¨x1-1£©•k£¨x2-1£©=$\frac{-3{k}^{2}}{1+4{k}^{2}}$£®
ËùÒÔ|OP|•|OQ|=3
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬¼°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {0} | B£® | [-1£¬1] | C£® | {-1£¬0£¬1£¬2} | D£® | D=[-2£¬3] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | $\frac{1}{2}$ | C£® | 1 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -2 | B£® | -1 | C£® | 1 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com