10£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬µã$R£¨{\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{14}}}{4}}£©$ÔÚÍÖÔ²ÉÏ£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Ö±Ïßy=k£¨x-1£©£¨k¡Ù0£©ÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬µãMÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬Ö±ÏßAMÓëÖ±ÏßBM·Ö±ðÓëÖá½»ÓÚµãP£¬Q£¬Çó|OP|•|OQ|µÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖÒòΪµã$R£¨{\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{14}}}{4}}£©$ÔÚÍÖÔ²ÉÏ£¬µÃa£¬b£¬c£¬¼´¿ÉµÃÍÖÔ²CµÄ±ê×¼·½³Ì¿É£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.µÃ£¨1+4{k}^{2}£©{x}^{2}-8{k}^{2}x+4k{\\;}^{2}-4=0$£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÐx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬
AMµÄ·½³Ì¿É±íʾΪ£ºy=$\frac{{y}_{1}}{{x}_{1}-2}£¨x-2£©$£¬Áîx=0£¬µÃ|OP|=|$\frac{2{y}_{1}}{{x}_{1}-2}$|£®Í¬ÀíµÃ£º|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|£®
¹Ê|OP|•|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|•|$\frac{2{y}_{1}}{{x}_{1}-2}$|=|$\frac{4{y}_{1}{y}_{2}}{£¨{x}_{1}-2£©£¨{x}_{2}-2£©}$|¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖÒòΪµã$R£¨{\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{14}}}{4}}£©$ÔÚÍÖÔ²ÉÏ£¬µÃ$\frac{£¨\frac{\sqrt{2}}{2}£©^{2}}{{a}^{2}}+\frac{£¨\frac{\sqrt{14}}{4}£©^{2}}{{b}^{2}}=1$£¬
ÓÖa 2=b2+c 2£¬½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
ÍÖÔ²CµÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.µÃ£¨1+4{k}^{2}£©{x}^{2}-8{k}^{2}x+4k{\\;}^{2}-4=0$£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÐx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬
ÓÖ¡ßµãMÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬¡àM£¨2£¬0£©£¬
AMµÄ·½³Ì¿É±íʾΪ£ºy=$\frac{{y}_{1}}{{x}_{1}-2}£¨x-2£©$£¬Áîx=0£¬µÃ|OP|=|$\frac{2{y}_{1}}{{x}_{1}-2}$|£®
 Í¬ÀíµÃ£º|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|£®
¹Ê|OP|•|OQ|=|$\frac{2{y}_{2}}{{x}_{2}-2}$|•|$\frac{2{y}_{1}}{{x}_{1}-2}$|=|$\frac{4{y}_{1}{y}_{2}}{£¨{x}_{1}-2£©£¨{x}_{2}-2£©}$|¼´£®
¶ø£¨x1-2£©£¨x2-2£©=x1x2-2£¨x1+x2£©+4=$\frac{4{k}^{2}}{1+4{k}^{2}}$£®
y1y2=k£¨x1-1£©•k£¨x2-1£©=$\frac{-3{k}^{2}}{1+4{k}^{2}}$£®
ËùÒÔ|OP|•|OQ|=3

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬¼°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¼¯ºÏA={x|-1£¼x£¼3}£¬B={x|-2£¼x£¼1£¬x¡Êz}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{0}B£®[-1£¬1]C£®{-1£¬0£¬1£¬2}D£®D=[-2£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãOºÍA£¨5£¬2£©Îª¶¥µã×÷µÈÑüÖ±½Ç¡÷ABO£¬Ê¹¡ÏB=90¡ã£¬ÇóµãBºÍÏòÁ¿$\overrightarrow{AB}$µÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚº¬ÓÐ3¼þ´ÎÆ·µÄ100¼þ²úÆ·ÖУ¬ÈÎÈ¡2¼þ£¬Çó£º
£¨¢ñ£©È¡µ½µÄ´ÎÆ·ÊýXµÄ·Ö²¼ÁУ¨·Ö²¼ÁÐÖеĸÅÂÊÖµÓ÷ÖÊý±íʾ£¬²»Äܺ¬×éºÏ·ûºÅ£©£»
£¨¢ò£©ÖÁÉÙÈ¡µ½1¼þ´ÎÆ·µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÓÐÒ»ÍÖÔ²ÐÎÁï±ù³¡£¬³¤Ö᳤100m£¬¶ÌÖ᳤60m£®ÏÖÒªÔÚÕâÁï±ù³¡ÉÏ»®¶¨Ò»¸ö¸÷¶¥µã¶¼ÔÚÁï±ù³¡±ß½çÉϵľØÐÎÇøÓò£¬ÇÒʹÕâ¸öÇøÓòµÄÃæ»ý×î´ó£¬Ó¦°ÑÕâ¸ö¾ØÐεĶ¥µã¶¨Î»Ôں䦣¿Õâʱ¾ØÐεÄÖܳ¤ÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªcos¦Á=$\frac{1}{3}$£¬ÇÒ-$\frac{¦Ð}{2}$£¼¦Á£¼0£®Çó$\frac{tan£¨-¦Á-¦Ð£©•sin£¨\frac{3¦Ð}{2}+¦Á£©}{cos£¨\frac{¦Ð}{2}-¦Á£©•tan£¨-¦Á£©}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺$\frac{f'£¨x£©-f£¨x£©}{e^x}=x$£¬ÇÒf£¨0£©=$\frac{1}{2}$£¬Ôò$\frac{f£¨x£©}{{|x|•{e^x}}}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®0B£®$\frac{1}{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈôÔ²C1£º£¨x-1£©2+£¨y+3£©2=1ÓëÔ²C2£º£¨x-a£©2+£¨y-b£©2=1ÍâÀ룬¹ýÖ±Ïßl£ºx-y-1=0ÉÏÈÎÒâÒ»µãP·Ö±ð×öÔ²C1£¬C2µÄÇÐÏߣ¬Çеã·Ö±ðΪM£¬N£¬ÇÒ¾ù±£³Ö|PM|=|PN|£¬Ôòa+b=£¨¡¡¡¡£©
A£®-2B£®-1C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊýÁÐ{an}£¬ÆäǰnÏîºÍΪSn£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈô{an}ÊǵȲîÊýÁУ¬Ôò$£¨{10£¬\frac{{{S_{10}}}}{10}}£©£¬£¨{100£¬\frac{{{S_{100}}}}{100}}£©£¬£¨{110£¬\frac{{{S_{110}}}}{110}}£©$Èýµã¹²Ïߣ»
¢ÚÈô{an}ÊǵȲîÊýÁУ¬Ôò${S_m}£¬{S_{2m}}-{S_m}£¬{S_{3m}}-{S_{2m}}£¨{m¡Ê{N^*}}£©$£»
¢ÛÈô${a_1}=1£¬{S_{n+1}}=\frac{1}{2}{S_n}+2$£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ»
¢ÜÈô${a_{n+1}}^2={a_n}{a_{n+2}}$£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ®
ÆäÖÐÖ¤Ã÷ÌâµÄÐòºÅÊÇ¢Ù¢Ú£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸