精英家教网 > 高中数学 > 题目详情
4.已知数列{an}首项为2,且对任意n∈N*,都有$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,数列{an}的前10项和为110.
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)若存在n∈N*,使得an≤(n+1)λ成立,求实数λ的最小值.

分析 (Ⅰ)由对任意n∈N*,都有$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,可得当n≥2时,$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n-1}{a}_{n}}$=$\frac{n-1}{{a}_{1}{a}_{n}}$,相减化简可得2=(n+1)an+1-nan+2,即可证明.
(Ⅱ)设{an}的前n项和为Sn,则d=2,可得an=2n.由于存在n∈N*,使得an≤(n+1)λ成立,可得λ≥$\frac{2n}{n+1}$,再利用数列的单调性即可得出.

解答 (Ⅰ)证明:∵对任意n∈N*,都有$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,
∴当n≥2时,$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n-1}{a}_{n}}$=$\frac{n-1}{{a}_{1}{a}_{n}}$,
可得:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$-$\frac{n-1}{{a}_{1}{a}_{n}}$,又a1=2,
∴2=nan-(n-1)an+1
可得2=(n+1)an+1-nan+2
∴2nan+1=nan+nan+2,即2an+1=an+an+2,∈N*
当n=1代入已知条件得$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$=$\frac{2}{{a}_{1}{a}_{3}}$,即2a2=a1+a3
∴2an+1=an+an+2,∈N*
∴数列{an}为等差数列.
(Ⅱ)设{an}的前n项和为Sn,则d=2,
∴an=a1+(n-1)d=2n.
∵存在n∈N*,使得an≤(n+1)λ成立,
∴λ≥$\frac{2n}{n+1}$,
令cn=$\frac{2n}{n+1}$,则$\frac{{c}_{n+1}}{{c}_{n}}$=$\frac{\frac{2(n+1)}{n+2}}{\frac{2n}{n+1}}$=$\frac{{n}^{2}+2n+1}{{n}^{2}+2n}$>1,
∴(cnmin=c1=1.
∴λ≥1.

点评 本题考查了递推关系、等差数列的通项公式及其性质、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设函数f(x)在R上存在导数f′(x),对于任意的实数x,有f(x)+f(-x)=2x2,当x∈(-∞,0]时,f′(x)+1<2x.若f(2+m)-f(-m)≤2m+2,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合M={x|y=lg(x2-8x)},N={x|x=2n-1,n∈Z},则{1,3,5,7}=(  )
A.R(M∩N)B.(∁RM)∩NC.(∁RM)∩(∁RN)D.M∩(∁RN)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设Tn是数列{an}的前n项之积,满足Tn=1-an,n∈N*
(Ⅰ)求a1,a2,a3,并求数列{an}的通项公式;
(Ⅱ)设S=T12+T22+…+Tn2,是否存在k∈N*,使|an+1-Sn|∈($\frac{1}{k+1}$,$\frac{1}{k}$)对n∈N*恒成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=$\sqrt{3}$,点E为棱CD上一点,则三棱锥E-PAB的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某班级举办知识竞赛活动,现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对1道,则获得二等奖.某同学进入决赛,每道题答对的概率p的值恰好与频率分布表中不少于80分的频率的值相同.
(1)求该同学恰好答满4道题而获得一等奖的概率;
(2)设该同学答题个数为X,求X的分布列及X的数学期望.
序号分组(分数段)频数(人数)频率
1[60,70)80.16
2[70,80)22a
3[80,90)140.28
4[90,100)bc
合计d1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某兴趣小组有男生2名,女生1名,现从中任选2名学生去参加问卷调查,则恰有一名男生与一名女生的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若tan(α+$\frac{π}{4}$)=2,则sin2α的值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=a(|sinx|+|cosx|)-sin2x-1,a∈R.
(1)写出函数 f(x)的最小正周期(不必写出过程);
(2)求函数 f(x)的最大值;
(3)当a=1时,若函数 f(x)在区间(0,kπ)(k∈N*)上恰有2015个零点,求k的值.

查看答案和解析>>

同步练习册答案