精英家教网 > 高中数学 > 题目详情
11.作出下列函数的图象.
(1)y=2x2-4x-3(0≤x<3);
(2)y=$\frac{x}{x-1}$.

分析 (1)明确抛物线的顶点坐标,对称轴和与x,y轴的交点即可画图;(2)利用分离常数法,可将函数解析式化为反比例型函数,进而根据函数图象的平移变换法则,得到答案

解答 解:(1)y=2x2-4x-3(0≤x<3);图象如图

(2)y=$\frac{x}{x-1}$的图象如图

点评 本题考查了基本函数图象的做法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=kx-$\frac{k}{x}$-2lnx在定义域单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设定义在[-2,2]上的函数f(x)单调递减,若f(|1-m|)<f(2m),实数m的取值范围是[-1,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义在R上的奇函数f(x)关于直线x=1对称,且在[0,1]上的解析式是f(x)=2x.
(1)试画出函数在[-2,8]上的图象;
(2)若直线y=ax,(a>0)与函数f(x)的图象恰有5个交点,求a的值;
(3)若直线y=ax,(a>0)与函数f(x)的图象有7个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.判断函数f(x)=$\sqrt{x}$在[0,+∞)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.证明:a3ab3bc3c>aa+b+cba+b+cca+b+c(其中a>b>c>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.依次计算数列:(1-$\frac{1}{4}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$),…的前4项的值,由此猜想(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$)…(1-$\frac{1}{(n+1)^{2}}$)(n∈N*)的结果,并用数字归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.f(x)=$\frac{3}{4}$x2+$\frac{3}{2}$x-$\frac{9}{4}$在[-2m+3,-m+2](m>1)上的最小值是-$\frac{9}{4}$时.求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a>0,b>0,若x=min(1,a,$\frac{b}{{a}^{2}+{b}^{2}}$),则a,b变化时,x的最大值为$\frac{1+\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案