精英家教网 > 高中数学 > 题目详情
13.如图,三棱锥D-ABC中,AB=AC=CD=1,∠BAC=∠ACD=90°,<$\overrightarrow{AB}$,$\overrightarrow{CD}$>=60°,则BD的长为(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{6}}{2}$D.$\sqrt{2}$

分析 由$\overrightarrow{BD}$=$\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CD}$,可得${\overrightarrow{BD}}^{2}$=${\overrightarrow{BA}}^{2}$+${\overrightarrow{AC}}^{2}$+${\overrightarrow{CD}}^{2}$+2$\overrightarrow{BA}•\overrightarrow{AC}$+2$\overrightarrow{AC}•\overrightarrow{CD}$+2$\overrightarrow{BA}•\overrightarrow{CD}$,再利用数量积运算性质即可得出.

解答 解:∵∠BAC=∠ACD=90°,<$\overrightarrow{AB}$,$\overrightarrow{CD}$>=60°,
∴$\overrightarrow{BA}•\overrightarrow{AC}$=$\overrightarrow{AC}•\overrightarrow{CD}$=0,$\overrightarrow{BA}•\overrightarrow{CD}$=-cos60°=-$\frac{1}{2}$.
∵$\overrightarrow{BD}$=$\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CD}$,
∴${\overrightarrow{BD}}^{2}$=${\overrightarrow{BA}}^{2}$+${\overrightarrow{AC}}^{2}$+${\overrightarrow{CD}}^{2}$+2$\overrightarrow{BA}•\overrightarrow{AC}$+2$\overrightarrow{AC}•\overrightarrow{CD}$+2$\overrightarrow{BA}•\overrightarrow{CD}$
=3+0+0-1=2,
∴$|\overrightarrow{BD}|$=$\sqrt{2}$.
故选:D.

点评 本题考查了空间线面位置关系、数量积运算性质、向量多边形法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知p:-2≤x≤10;q:1-m≤x≤1+m(m>0).若¬p是¬q的必要不充分条件,则实数m的取值范围是[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.棱长为2的正方体ABCD-A1B1C1D1中,点M是CC1的中点,则三棱锥C1-BDM的体积是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个函数在(-∞,0)是增函数的为(  )
A.f(x)=x2+4B.f(x)=1-2xC.f(x)=-x2-x+1D.f(x)=2-$\frac{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.C${\;}_{3n}^{38-n}$+C${\;}_{n+21}^{3n}$=(  )
A.466B.478C.512D.526

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\vec a$=(1,2),$\vec b$=(2,y)且$\vec a$⊥$\vec b$,则$|{2\vec a+\vec b}$|=(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx,g(x)=$\frac{1}{8}$x2-x.
(1)求f(x)的单调区间和极值点;
(2)是否存在实数m,使得函数h(x)=$\frac{3f(x)}{4x}$+m+g(x)有三个不同的零点?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知命题p:?x∈R,x2+ax+1≥0,写出¬p:?x∈R,x2+ax+1<0;若命题p是假命题,则实数a的取值范围是a<-2或a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2-2x)lnx+ax2+2.
(1)当a=-1时,求函数f(x)在点(1,f(1))处的切线方程;
(2)设函数g(x)=f(x)-x-2,
①当函数g(x)有且只有一个零点时,求a的值;
②在①的条件下,当e-1<x<e时,g(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案